治水対策による瀬や淵の消失~安室川の小さな自然再生プロジェクト~

川の流れ (本流)

Fig.3 掘削当初の溝

兵庫県立上郡高等学校 地域環境科 袖山幸大

背景

近年、安全な暮らしを確保するため、多くの河川で 治水対策が進む一方で瀬や淵の消失が進み、水生生 物の住処の減少が懸念されている。(Fig.1) 上郡町を流れる安室川も例外ではなく2004年に 「安室川自然再生計画」が策定され河道の再生が取 り組まれた。(Fig.2)

Fig.2 安室川自然再生計画

安室川自然再生計画において「たまり」と本川をつなぐ溝 が掘られ、水生生物の生息空間がつながり、多様な生物が 生息できる環境になることが期待された。(Fig.3) しかし、長年の土砂の堆積によって溝が埋まってしまい

> 水生生物の移動が難しい状態と なっていた。(Fig. 4)

Fig.4 2021年の溝

目的

- ①水生生物が生息しやす い環境の整備
- ②地域住民と一体となっ た活動の実施
- ③川の環境整備が持続的 に行われるための仕組 みづくり

研究(1)たまりと本流をつなぐ溝の掘削と水質調査

たまりと本流の水質判定を行うために生物調査を行い、捕獲した生 物から水質階級を判定した結果、安室川は「比較的綺麗な水」と判 定できた。(Fig.5)水生昆虫による水質評価を裏付けるために、パッ クテストでの水質測定を行った。結果をTable1に示す。CODが全 体的に高い値となり、たまりの水質改善が必要と分かり、溝を作り 本流とつなげることで改善できないかと考えた。

Male .	-		Æ.	
1		6	9	6
Fig.	5 溝施	工前の生	上物調	爬虫類 查結果

Table1 たまりのバックテスト結果							
調査日	Нq	COD (mg/1)	アンモニウム (mg/1)	硝酸 (mg/1)	リン酸 (mg/1)		
6/13	7.5	13	0.2	0	0		
7/7	7.5	20	1.0	0	0		
8/7	7.0	20	0.2	0	0		
11/25	7.0	5	0.2	1	0		

本流と「たまり」の地 形を把握するために、 川の流れる方向に沿っ て測量を行い、測量結 果から模型を作成した。 (Fig. 6)

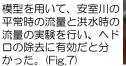


Fig 7 模型を使った水利実験

水理実験の結果から、水生生物 が往来しやすい、幅60cm、深さ 60cm、長さ10mで溝を掘削 した。(Fig.8,9)

Fig.9 掘削後

研究②環境DNAを用いた生物調査

溝施工後に生物調査を行った ところ、採取できた生物は、 施工前の生物調査と大差のな い結果となった。(Fig.10)

Fig.10 溝施工後の生物調査結果

モンドリやタモ網を用いた調査では、限界があると考え、採水 し含まれている生物由来のDNAを分析することで生息している 可能性が高い生物を同定できる環境DNA分析による生物調査を 神戸大学に協力をいただき上流中流下流の三か所で行った。 (Fig.11~13)

Fig.11 遠心分離機

Fig.13 調査地点

環境DNA分析の結果を以下に示す。環境保護が必要 な絶滅危惧種IA類、IB類が含まれていることがわかっ

カワムツ		7.	פרכ	ヨシノボリ		オイカワ		ムギツク				
			コイ		オヤニ		ニラミ		カマツカ			
I	シマドジョウ属 ス		スッ	ッポン		アカザ		ナガレホトドジョウ		ケ		
	カワムツ	3	ワヨシ ポリ	オ	イカ	7	ムギン	כנ	٦	1		
	カマツカ	11	⊦ŧ0	Z		シ	1				】 赤:絶滅危惧種IA	
	ヌマムツ	1	Eツゴ	9	シマヨ						青	: 絶滅危惧種IB類
	ニホンウナギ	ゲブ	ם ל			1 40		ガイ	プロウ シマド	ガタスシ	緑	:絶滅危惧種Ⅱ類
1	ドジョウ											
	カワムツ	カワボ	ヨシリ	オイカワ		ムギツク		ドンコ		D۲		
	カマツカ	シマ	ゥウ属	アカ	アカザ		イトモロコ		TEDD 27		ムツ	
	モツゴ	オオバス	クチ	フナ	E		ミナミ カ		ワヒガイ H		Þ	
	コウライ	_	ヒラ	カムルチー		ズナガ		アブ	ラボテ	タイリバラダ	クカゴ	
	デメモロコ	ニック	ボン	##			ノボリ					

研究③千種川における新たな取り組み

兵庫県南西部を流れる千種川はアユ の生息場所として保全が求められて いる。しかし、中心の溝(澪筋)が 左岸側によっており、右岸側への水 の流入が少なく河川整備で中州に溝 が作られたが、水位が低下すると機 能しなくなることが課題となってい (Fig.15)

Fig.15 中州に掘られた溝

河川流域シミュレーターiRICを用いて千種川にバー を設置し、洪水実績(最大流量984.8m³/s)をもとに 同じ規模の洪水を9回流し、設置から9年間の流れの変 化および河床変化についてシミュレーションを行った。

(Fig.16) 結果、河床変動が生じ、溝への流入促進効果 を得られることが確認されたため兵庫県光都土木事務所 と協力してバーブエの設置を行った。(Fig.17)

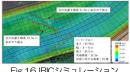


Fig.16 IRICシミュレーション

地域との連携活動

本校では毎年「なんでも体験隊」という活動に参加し地 域の小学生を対象に川の自然を守る活動を教えるなどの 交流を深めている。また、「小さな自然再生研修会In千 種川」に参加し、地域の方々との意見交流や昔の川の様 子などを聞くことができた。(Fig.18)

ほかにも、川の環境整備を持続的に行っていく活動とし て「ひょうごアドプト」というボランティア団体を支援 する制度を兵庫県と締結し今後も継続して川の環境整備 を続けていこうと考えています。 (Fig.19)

Fig.18 山野里なんでも探検隊

Fig.19 アドプトの看板

今後の課題

今後の課題は、安室川の継 続的な生物調査や川の保全 保護活動を地域で行ってい く活動づくり、バーブ工施 工後の川の流れの確認、生 物相の変化の記録などを 行っていく予定である。

まとめ

「この取組を多くの人や地域にひろげる」、 「川の管理を怠らず「せいび」をつづける」、 「自然を大切にする心を未来につなげる」 これを実現することで地域も元気になっていくは ずです。地域の大切な宝を守り続けるために、 「ひろげる」「つづける」「つなげる」を「あい ことば」に、

私たち高校生がその取組の中核となって活動を続 けていきます。

本研究を進めるにあたり、兵庫県西播磨県 民局光都土木事務所砂防第1課、神戸大学 大学院人間発達環境学研究科 佐賀先生、滋 賀県立大学環境科学部 瀧先生、県立人と自 然の博物館 三橋研究員、千種川圏域清流づ くり委員会 横山先生、上郡町建設課、山野 里なんでも体験隊など多くの皆様にご指導 ご協力をいただきました。この場を借りて お礼申し上げます。