

令和4年度~6年度

国際的な探究活動の記録と成果

一世界に羽ばたく「出る杭」の育成一

兵庫県立姫路東高等学校

SSH 第 I 期の国際的な活動の成果

兵庫県立姫路東高等学校 SSH 推進部長/主幹教諭 責任編集 川 勝 和 哉

本校は令和2年度から令和6年度まで、文部科学省からスーパーサイエンスハイスクール (SSH) の第 I 期指定を受け、さまざまな研究開発に取り組んできました。それらはすべて、国際的に活躍する人材の育成という大目標に向かう研究開発です。

指定前半はコロナ禍の時期と重なり、思うような海外研修をすることができませんでした。その間、生徒とともに海外研修に向けて準備を行い、ZOOMを活用して現地との協議を重ねました。コロナ禍が一息つき、現地の受け入れ態勢が整った令和4年度~6年度の3年間は積極的な海外研修を行い、一般の高校生では経験できないような大きな成果を得ることができました。また、幸運にも国内において複数の国際学会等が開催されたことから、これらに積極的に参加して講演を行い、海外の高校生や研究者と積極的に議論したり交流したりしました。

これらの経験は、参加した生徒を「出る杭」として大きく育てました。研究内容が国際的に高い評価を得ただけではなく、日本国内では経験したことのない自然や風習、考え方に刺激を受けました。さらに、それらの活動に触れた校内外の多くの生徒の目を海外に向ける契機ともなっており、また表現し伝えるための英語の重要性を認識させるなど、海外に出て活躍したいという強い思いを引き出しました。まさに、「出る杭」となった生徒が他の生徒を先導する形で科学技術人材の育成を行い、世界にはばたき、世界で活躍する人材の育成に資することにもなりました。

本冊子は第 I 期の国際的な活動内容の主なものとその成果を広く公開することによって、他の高校等の探究活動の参考となるようにまとめたものです。各校の状況に合わせながら国際的な探究活動の展開の参考になれば幸いです。

目 次

	1.	海外研修の基本的な考え方		1
	2.	海外研修の企画の方法・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・		1
	3.	SSH の指定を受けて		2
	4.	オーストラリア海外研修 (野外調査)		3
	5.	アメリカ海外研修(学会発表)	1	1
	6.	第 91 回国際地球科学教育学会	2	3
	7.	国際学会誌「Journal of Modern Education Review」に論文掲載	2	8
	8.	21 世紀の中高生による国際科学技術フォーラム SKYSEF2024	3	8
	9.	国連「世界津波の日」2024 高校生サミット	4	6
1	0.	International Webinar on Earth Science and Climate Change	5	2

1. 海外研修の基本的な考え方

生徒をただ海外に連れ出しても、期待するほどの成果を得ることは難しいでしょう。たとえば集団で海外の学校や研究機関、博物館等を訪問しても、現地で日本人だけで集団をつくってしまうような環境にあれば、結局英語を話さずじまいで、異文化交流も十分ではないという結果に終わってしまいます。スーパーサイエンスハイスクール(SSH)指定校は、生徒の科学的探究力の育成に資する研究開発プログラムでなければなりませんので、企画の成果が上がるようにするためにはどうすればよいかについて徹底的に検討する必要があります。

本校は地球科学をベースにしたカリキュラムと課題研究、科学部の活動を SSH の柱にしているため、海外研修の基本を、海外のフィールドでの研究活動と、その成果を国際学会で発表することにおいています。日本国内で経験を積んだ研究手法に基づいて活動するので、国内の研究活動で一定の成果を上げている研究テーマであることが企画の前提となります。あらかじめ議論して決定したテーマに基づいて、生徒一人一人役割を分担し、責任をもって実行する中で、日本国内とは異なる成果を得ることを目的にします。日本国内でも行うことができる研究活動を、わざわざ海外に出かけて行って行う必要はない、という考え方が基本にあります。

2. 海外研修の企画の方法

本校が海外研修を企画する場合、その準備は数年前から始めます。本校の海外研修は研究活動とその成果の国際学会発表にあるので、次のような段階を踏んで準備することになります(ここでは JST とのやり取りは省略します)。

① 研究の目的を明確にして訪問地を絞り込む

国内での研究活動で成果を上げた研究について、海外で研究することによってより高い成果を得ることができる研究を海外研修の対象として企画します。ですから、毎回同じ地域を訪問するということは考えません。先行研究を調べて、国内での成果を基にして展開できる地域を絞り込んでいきます。海外での研究活動は、国内で成果を上げた生徒を中心に、その活動に興味のある生徒が加わって行います。関連する文献(多くは英語で書かれています)を読む活動は、1年間以上必要です。

② 専門家への聞き取り調査

ある程度地域が絞り込めたら、その分野の専門家に連絡を取って、具体的に企画を考えます。国内に限らず海外の研究者とも連絡を取り合います。これまでにどれだけ幅広い人脈を構築することができているかが海外研修の成否に大きく影響します。本校では、国内外の生徒研究発表会に引率する教員は、現地で多くの専門家と交流することを心掛けていて、現在では(個人的なものも含めると)ほぼすべての大学の研究者や複数の海外の研究者との繋がりがあります。国内の学会発表の引率は、生徒を現地に連れて行くだけではなく、研究者との交流が大きな仕事だといえます。専門家への聞き取りによって、訪問地を変更することもあります。

③ 現地との連絡

訪問地が決まったら、現地のさまざまな機関と連絡を取ります。たとえば、訪問する期間中に現地の大学研究者と面会できないか、現地の高校生との交流は可能か(これは研究活動とは直接関係しませんので必須の条件とは考えていません)、現地の研究者の研究論文を入手できるか等について連絡を取り合います。現地研究者と直接関係ができていなくても、たとえば本校の運営指導委員の先生方や知人の大学研究者から連絡を取っていただくこともあります。そのために、運営指導委員会の先生方は、海外研修を踏まえた人選をするようにしています。

④ 目的を絞り込み仮説を立てる

海外まで出かけていくのですから、成果が得られる可能性が高いことが必須となります。本校の場合、(ア) オーストラリアの Bingi Bingi Point は、十分地質調査されている国際的なフィールドであ

り、フィールドトリップでは必ず訪問する地域であるにもかかわらず、マグマ分化に関する研究が不十分であること、(イ)複数のマグマが不混和な状態で互いに関係しあっていることがわかっていること(本校の国内での研究はまさにこのマグマ分化に関するものでした)、(ウ)研究期間で成果が得られる妥当な調査範囲であること、(エ)現地の研究者の協力が得られ情報提供が得られることが見込めること等を踏まえて、「この地域の深成岩の角閃石から、日本国内で発見した波状累帯構造が発見できる」という仮説を立てました。実際に訪問して調査をしてみないと確証は得られませんが、この見込みがないと研究を目的に海外に出ていく価値が半減してしまいますから、仮説を立てることは非常に重要です。

⑤ 調査地域の承諾を取る

調査地域の範囲内に個人の土地があったり、立ち入りが制限されていたりすることがあります。本校のオーストラリア海外研修(露頭調査)では、国立公園に含まれる地域があったり、先住民族アボリジニの祈りの場が含まれていたりしました。調査のために立ち入ってよいのかどうか、試料を採取することが可能かどうかについて、事前に確認し了解を得ておく必要があります。本校では研究倫理の教育を徹底していますので、この過程を生徒に見せることで、実際の研究活動における研究倫理の生きた活動に触れさせることもできます。

⑥ 調査・研究

これまでの過程を丁寧に進めていれば、何らかの成果が得られます。出てきた成果によって、その後の活動は変わります。たとえば、オーストラリア海外研修(露頭調査)では、深成岩の角閃石から、まだ海外では誰も報告していない波状累帯構造を多く発見しました。生徒は発見したことで終わらせず、これを化学分析して形成過程やその環境条件を明らかにしたいと考えました。そこで生徒たちは、京都大学の先端的研究をサポートする COCOUS-R を受験して合格し、生徒自身によって京都大学理学部の Electron Probe Micro Analyzer (EPMA) を使用する環境を作りました。一般には大学生でもなかなか使用できないような装置なのですが、専門家からの講習を受けて生徒自身が分析しました。研究費がなかったため、企業の研究助成に応募して採択を受け、生徒自ら研究費を獲得しました。このような生徒自身による外部への働きかけを経て、研究論文をまとめました。

⑦ 活動内容と研究成果の普及

このような活動の一部には税金を使っていますので、活動について広く報告(広報)する必要があります。報告書や研究論文冊子を作成してホームページ上で公開したり、さまざまな場でプレセンテーションしたりする必要があります。本校の場合は、兵庫県高等学校教育研究会で高校教員に向けて発表したり、生徒研究後期発表会や本校主催の探究発表会 Girl's Expo with Science Ethics(約 1000名の学生が集う研究発表と交流の場です)で全国の高校生や近隣の小・中学生、保護者や地域住民、学校関係者等に対して生徒が発表したりします。

3. SSH の指定を受けて

このような活動は、SSH の指定を受けることで実現性が高まるものです。SSH を運営する JST と連絡を密にとることで、資金を有効に活用することができます。SSH 事業を行うにあたっては、資金にも活動にも制約があります。しかしだから面倒だと考えずに、生徒の探究力の育成のために資金が提供されているのですから、その資金をどのように活用するのかと考えるようにしています。海外研修を好機ととらえて、単なる海外旅行に受け身の研修をプラスしたような企画を立てず、本格的な研究活動と成果の発表を通じて「出る杭」となる生徒を育成しようと考えています。

本校は、令和2年度にSSHのI期に指定され「世界を牽引する人材育成のための国際的な課題研究と科学倫理探究のロールモデル作成」を研究開発課題として取組み、今年でI期の5年目を終えます。具体的な研究開発テーマは、①地球科学を中心にした国際的な活動への挑戦、②科学倫理教育のロールモデル

の作成と県内外への発信、③理系女子の育成と国際的な活動への挑戦、④科学部の国際的な活動への支援、です。ここで紹介するのは、これらの柱のうちの①と④に関わる国際的な活動の実際です。

4. オーストラリア海外研修(野外調査)

(ア) 研究の背景と目的

日本の西南日本内帯に広く分布する白亜紀深成岩類は、南部のチタン鉄鉱系列と北部の磁鉄鉱系列に大きく二分される。これらはもともと異なるマグマだったのか、同じマグマが固結する過程で異なるマグマや地殻物質が混染したのかはまだ明らかにされていない。科学部顧問の川勝和哉主幹教諭は、大学院生時代に西南日本内帯山陰帯の深成岩の角閃石から世界で初めて波状累帯構造を発見し、スタンフォード大学で開催された国際鉱物学会で発表した。その後、Geochimica Cosmochimica Acta 誌に論文が掲載された※)。教科書通りに鉱物が結晶化するのではないことを示したこの論文は一躍脚光を浴びたが、専門性が高く物理化学の深い理解が必要な研究であったことから、これに続く研究成果はほとんど発表されていなかった。本校の生徒が偶然その論文を目にし、その構造の美しさに魅かれた生徒は、自分たちがこの研究を引き継ぎたいと希望した。

詳細な露頭調査と岩石鉱物学的研究によって、生徒は山陽帯の深成岩の角閃石から初めて波状累帯構造を発見した。この微細構造は幅 $1\sim 2~\mu$ m程度の帯が結晶の c 軸方向に平行に発達するもので、マグマ分化過程末期の環境を示すものとして重要な意味をもっている。この研究は火山の噴火に関する知見を深めることにも役立つ。研究論文は、日本学生科学賞で中央審査会に進出するなど、一定の成果を上げていた。

この研究の成果を基にして、オーストラリア南東部ニューサウスウエールズ州海岸地帯の露頭 調査と岩石・鉱物学的な研究を行い、日本国内の研究でマグマ分化過程のモデルを作成する際に用 いた角閃石の波状累帯構造が、国際的に通用する指標なのかどうかについて検証を行うことを目 的とした。これは高校生のレベルを超えて、学術的な成果を期待できるものであった。

Kawakatsu, K. and Yamaguchi, Y (1987) Successive Zoning of Amphiboles during Progressive Oxidation the Daito-Yokoyta Granitic Complex, San-in Belt, Southwest Japan. (Geochimica Cosmochimica Acta, 51, 535-540.)

(イ) 研究テーマ

角閃石の波状累帯構造がマグマ分化の指標となるのかどうかの検証-岩石鉱物学的研究-

(ウ)実施日程

令和6年1月22日(月)~2月1日(木)の9泊11日(機内1泊)

- 1月22日(月)
 - 8:00 JR 姫路駅南側ロータリーのバス内に集合
 - 8:30 JR 姫路駅 出発(貸切バス)
 - 10:30 関西空港 到着
 - 13:30 関西空港 出発 (大韓航空 KE728 便)
 - 15:25 仁川空港 到着 (乗り継ぎ)
 - 18:45 仁川空港 出発(大韓航空 KE401 便) 機中泊
- 1月23日(火)
 - 6:55 シドニー空港 到着、入国手続き
 - 8:00 シドニー空港 出発 (専用車)、シドニー大学研修、オーストラリア博物館研修
 - 18:00 ホテル 到着、Metro HTL Marlow SYD 泊
- 1月24日(水)
 - 9:00 ホテル 出発(専用車)

16:00 ナルーマ 到着、Harrington Motel 泊

1月25日(木)~29日(月)

9:00 野外調査 出発、ナルーマ~トマキン海外線へ(専用車)

10:00 調査地域 到着、調査

16:00 調査終了 出発(専用車)

17:00 ナルーマ 到着

Horizon Apartment Narooma 泊 (アパートメントを借り切り自炊しながら調査)

1月30日(火)

8:30 打合せ

11:00 シドニー 出発(専用車)

18:00 シドニー 到着、Metro HTL Marlow SYD 泊

1月31日(水)

8:30 専用車で移動、ブルーマウンテンズ研修

18:00 ホテル 到着、Metro HTL Marlow SYD 泊

2月1日(木)

6:10 ホテル 出発 (専用車)

6:50 シドニー空港 到着、搭乗手続き

9:00 シドニー空港 出発 (KE402 便)、到着後出国手続き

18:05 仁川空港 到着 乗り継ぎ

19:05 仁川空港 出発 (KE721 便)

21:00 関西国際空港 到着、入国手続き

22:00 関西国際空港 出発(貸切バス)

23:30 JR 姫路駅 到着、解散

(工)調査地域

シドニー大学 (Camperdown NSW 2050)

オーストラリア博物館(1 William Street, Sydney NSW 2010)

ナルーマ~トマキン海岸線

ブルーマウンテンズ国立公園

(才)参加者

希望者 38 名 (うち科学部 13 名、男子 14 名、女子 24 名) のうち、抽選で 19 名を選抜した。

生徒:1、2年次生徒19名(うち科学部12名/男子11名、女子8名)

引率:教員2名(川勝和哉主幹教諭/理科、平林友貴教諭/数学)

(力) 宿泊地

シドニー市内(1月23日(火)、1月30日(火)~31日(水))

Metro Hotel Marlow Sydney Central (431-439 Pitt St, Haymarket NSW 2000Australia)

ナルーマ (1月24日(水))

The Harrington Motel (153 Princes Highway, 2546 Narooma, Australia)

ナルーマ (1月25日(木)~29日(月))

Horizon Holiday Apartments Narooma (147 Princes Highway, 2546 Narooma, Australia)

(キ)内容

世界中に火成岩類は広く分布しているが、今回調査研究地域にオーストラリアのサウスウエールズ州東海岸地帯を選んだのは、次の理由による。

・ サウスウエールズ州東海岸のナルーマ~トマキンの火成岩類は、マグマ分化過程の各ステージを

自炊生活を送ったアパート

よく残していることで国際的に知られている。多くの構造地質学者によって、今回の研修で扱う火成岩が含まれている地質がよく露頭調査されているが、本校が行おうとしている、鉱物の微細構造を基にしてマグマ分化を明らかにする研究はまだほとんど行われていない。

- ・ 本地域の地質に詳しいクイーンズランド大学の Jonathan Aitchison 教授のサポートが得られる。
- ・ 近隣地域に、研究対象である火成岩が貫入している地層を広域に観察できるフィールドである、 ブルーマウンテンズ国立公園がある。研究対象である火成岩を含む地層を様々な地点から広域に 観察することによって、岩石鉱物学的な研究のベースとなる調査地域の地質構造を理解すること ができる。
- ・ 滞在して生活する上で安全なアパートメントが近くに確保できる。

① シドニー大学

本調査地域の自然につ いて長く調査・研究を行 っているシドニー大学理 学部を訪問し、研究者等 と対面で議論することに よって、観点を絞って効 率的な調査ができるよう にした。特に、調査地域は 複雑な岩石分布であるこ とが知られており、それ らの個々について、地質 構造や鉱物組成の特徴に ついて事前に議論してお くことは重要である。さ らに、潮位変化など海岸 地帯特有の調査の難しさ があるため、安全な調査 の継続のための助言を得た。

シドニー大学と理学部の博物館

研究者の案内によって理学部内の岩石・鉱物や地質構造に関する展示を見学して、現地調査に必要な生徒の観察眼を養い同定作業の一助となった。また、それらについて生徒と研究者とで質疑応答を行い、さらに帰国後の研究の進め方についても助言を得た。調査対象地域から採取される岩石試料はもちろんのこと、測定に使用するクリノメーターの技術の進歩についての展示などもあり、見ごたえ充分であった。

② オーストラリア博物館

オーストラリア南東部の地質調査および岩石試料採取の前に、シドニー市街にあるオーストラリア最古の博物館であるオーストラリア博物館を訪問した。近年リニューアルオープンしたところで、従来よりもさらに工夫を凝らした展示が並んでいた。生徒から依頼して岩石・鉱物学の研究者に説明を受け、その後の議論でも生徒から多くの質問が出た。事前学習によって得ていた知識を活用しながら、実際に岩石を手に取って観察することによって、翌日から調査するナルーマ〜トマキン海岸線に分布する岩石や鉱物等に関する有益な情報を得ることができた。

③ ナルーマ~トマキンの 海岸線フィールドワーク

調査地域は、ユーロボ ダラ国立公園の東に隣接 する Bingi Bingi Point の 海岸線沿いの周囲約 1.5km (南緯 36° 00′ 50″、 東経 150°09'22") であ る。日本国内で経験と実 績を積んできたマグマ分 化の研究をさらに発展さ せるために、本格的な野 外での地質調査を行うと ともに、岩石の観察と岩 石試料の採取を行った。 シドニーから南へ約350 km のフィールド付近のホ テルに宿泊しながら、露頭

オーストラリア博物館の展示と研究者との議論

調査を行った。曇り~小雨程度の日もあったが、天候に恵まれて調査は快調に進んだ。

調査地域の Bingi Bingi Point の位置(Google Earth)と参加した生徒の集合写真

地形図をもとに、クリノメーターやハンマー、地形図等の地質調査用具を用いて測量と岩石の露 頭観察を行い、岩石分布図を作成すると同時に、必要な岩石試料の記載と採取を行った。ホテルに 戻るとすぐに集合して、当日の調査結果や試料のまとめを行い、翌日確認すべき項目を明らかにし た。生徒は自ら考え、議論しながら主体的に活動した結果、調査は非常に効率よく正確に進み、本 来予定していなかった地域まで調査地域を広げることができた。

Bingi Bingi Point の海岸露頭

露頭調査と宿舎での調査結果のまとめ、岩石試料の整理

④ ブルーマウンテンズ~シーニックワールド研修

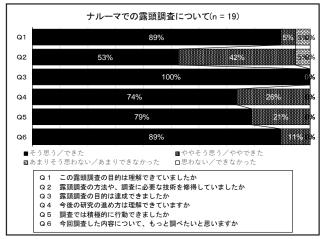
ナルーマ〜トマキンの海岸線では、深成岩を貫く玄武岩の岩脈が露出していたが、この地域を構成する広域な地層の観察はできない。そのため、ユネスコの世界自然遺産に指定されているブルーマウンテンズ国立公園を訪問し、今回の研究で注目する火成岩が貫入している地層を広域に観察した。地層の堆積の様子を初めて見た生徒も多く、地層形成のメカニズムについても説明を受けて理解することができた。残念ながら霧が深く、十分な観察をすることはできなかったが、時折霧が晴れたときにあらわれる広大な地層の様子は壮観であった。シーニックワールドはブルーマウンテンズ国立公園内にあり、ブルーマウンテンズを構成する地層の岩石を直接手に取り、現地ガイド

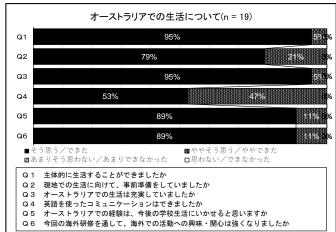
の説明を聞いて理解を深めた。

ブルーマウンテンズとシーニックワールドの露頭調査

(ク)振返り

シドニー大学からクイーンズランド大学に異動された Jonathan Aitchison 教授や、神戸大学名誉教授の波田重煕先生のサポートを得て、中身の濃い研修となった。特に、ナルーマ〜トマキンの露頭調査は、国内で多くの露頭調査を体験し、多くの研究論文を発表している科学部の生徒にとって非常に刺激的であったばかりでなく、科学部に所属していない生徒にとっても知的好奇心を掻き立てるものであった。参加したすべての生徒が「今自分は何をすべきか」を考え、主体的に調査を行った結果、非常に専門性の高い研究成果をあげることができた。科学部の生徒が「出る杭」となってほかの生徒をリードしたことで、全員が同じ方向を向いて主体的に活動することができた。チームとしての一体感が見られるようになり、最後には全員が一人前の研究者の顔になった。露頭でもホテルに戻ってからも時間を惜しんでよく議論し、この研修を意義深いものにしようと努力した。


そのほかにも、今回の研修の成果として、学習の意味の気づきがあった。自らの知識や経験の不足に気づき、日頃の学校での学習の意味を再認識することができた。研究活動のためには、地学ばかりではなく理科全般の深い知識と経験、それに客観的に表現するための数学や、研究をまとめて発表する国語力や英語力が必要であることをあらためて認識することができた。研究という探究活動は、身の回りの疑問をテーマに設定し、どのように解決していけばよいのかを考えて実行し、得られた結果から考察する、という経過をたどる。事前に答えが準備されているわけではなく、答えは何なのか、そもそも答えはあるのか、という課題に向き合う活動である。一方学校の授業は、すでに答えが明らかな課題をどう解くかを学ぶ活動である。この2つは表裏一体のもので、探究活動で答えのわからない課題に対峙した時、すでに答えがわかっている事項が頭に入り、あるいは訓練されているかどうかが問われる。今回の研修では、探究と授業という両輪の重要性を認識したのではないかと思う。


1月のオーストラリアは真夏で 40℃に迫る高温になることが知られているが、不思議なことに滞在中の最高気温が 30℃に達する日はなく、調査には最適な環境であった。空気が乾燥しており、日本の 10倍と言われる強い紫外線を受けながら、生徒は嬉々として調査に打ち込んだ。シドニー市街地のホテルに宿泊している間は、ホテルで準備される食事を食べたが、ナルーマに移動してからは、2名1室の部屋ごとに、生徒自身が毎食の準備を行った。近隣に WOOLWORTHS や ALDI などのショッピングモールがあり、自分たちで食材を購入して食事を作ったことも良い経験となった。当初はなかなか英語での会話ができなかったが、すぐに積極的に会話をするようになった。シドニーやナルーマでの散策や買い物などにも積極的に参加し、地元住民と交流した。

(ケ) アンケート結果

参加生徒に対するアンケートを実施した。参加した19名全員から回答を得た。露頭調査の目的をほぼ全員が理解して調査に臨み、その目的を全員が達成できたと答えていることは注目に値する。一

方、オーストラリアでの生活全般については、すべての生徒が、オーストラリアでの生活が充実していたと回答しており、今後の生活に生かせると感じている。英語でのコミュニケーションについての問いでは、53%がコミュニケーションが取れたと答え、残りの47%はややそう思うと答えている。

露頭調査と生活全般についてのアンケート調査結果 (n=19)

- ・1 日目の調査は岩石の種類もよく分からなくて、自分で見分けることができずに先生が言った通りに書いているだけでした。報告会でも簡易的な地図しか書けていないのに、私の頭の中で地図と風景が一致してなくて皆に言われるがまま書いていくだけで、申し訳ない気持ちになる事が多かったです。2 日目からは岩石の種類が分かるようになったり、気になる事が出来たりと、1 日目に比べて自分から行動する回数が増えたと思います。2 日目からは地図と風景が頭の中に入っていたので、調査後の報告会でも皆の言っている事を理解することが出来て、質問したり確認しながら 1 日目より正確な地図を書くことが出来ました。3 日目は新しいバサルトを見つけたり、バサルトの走向を測り間違っている事に気づくことができました。初めは自分が大切な役割を担う事にかなり不安を感じていたけれど、最終的には不安が楽しさに変わっていて、この役割が出来て本当に良かったなと思います。(2 年 露頭調査リーダー女子)
- ・炎天下での調査でしたが、調査の終わりに皆で集まって調査結果を照らし合わせて地質図が出来上がっていくのは毎回ワクワクして、調査のやりがいを実感した瞬間でした。僕は科学部員ではなかったので研究内容などを理解しきれるか不安でしたが、川勝先生の説明や実際に岩石を見ることによって理解することができ、今回の研修が有意義な経験になってよかったです。(2年 文系男子)
- ・調査に参加する前は岩石のことは何も知らなくて、特に興味もありませんでした。動物や植物は好きだったけれど、自分は地層や岩石のことも面白いと思える人間なんだと知れて嬉しいです。この調査をする前は地学の面白さを知らないし、一つの地点に違う色の岩があったり縦に一筋伸びている岩があったりしても、それに意味があるなんて思わなかっただろうし、知ろうともしなかっただろうなと考えたら、今回の調査に参加できて本当に良かったです。これからは少しでも興味を持ったり、興味はなくても機会があれば何にでも関わっていこうと思います。この調査のおかげで、自分の興味の先が増える楽しさを知ることができました。(2年 理系女子)
- ・聞き慣れない言葉はメモしたり、友達に聞いたりして覚えようとしました。言葉や道具、何を測っているのかが分かってくるととても面白くなってきて、岩石を見る目が変わった気がします。特に斑晶の状態から形成された時代が違う事、ズレが生じていること、ズレが生じたタイミングが予想できることなど自分でも想像できることが増えてどんどん楽しくなりました。バサルトのビジュアルお気に入りです。バサルト見るとテンション上がります。バサルトの通った道を見つけたくなります。並

行に走ってるとか最高です。また様々なフィールドに行ってみたいです。元々理科の中で地学の好き 度は低かったのですが今回好きになりました。もっと知識を身につけたいし、実際にフィールドワークももっとしたいと思いました。自分の興味が広がって楽しかったので、今後もこのような活動があれば積極的に参加していきたいと思います。(2年 理系女子)

- ・2日目は1日目のやり直しで時間を食ってしまって調査範囲が少なくなってしまいましたが、こうしたらいい、ああしたらいいと班で話せてすごく楽しかったです。3日目で砂場の調査を任されて、かなり複雑なバサルトの構造を紐解いていったり、細かな構造を見つけることができたりと観察眼を養うことができたと思います。波状累帯構造を探す時とは違った難しさや楽しさがあってすごく貴重な経験でした。全ての日を通して、マグマ班の研究の理解度がかなり上がりました。フィールドワークの大変さをすごく理解したので、今後の研究発表の時に活かそうと思います。(2年 理系女子)
- ・今回のオーストラリアの調査では、さまざまな学びを得ることができました。それは、計画することの大切さ、発見の楽しさ、そして仲間と協力することの大切さです。調査を進めていくと、この層とこの層は繋がっているのかとか、岩石の境界面はここからあそこまで伸びているのかとか、さまざまな発見がありました。そういう発見や気づきがあるたびに、調査が楽しくなっていきました。また、今回の調査ではいくつかのグループに分かれ、グループごとに役割分担を行いながら調査しました。グループ内で話し合ったり、他のグループとコミュニケーションをとったりして、仲間と協力することの大切さに気づくことができました。今回のオーストラリア研修ではさまざまな苦労がありましたが、それよりもっとたくさんの楽しみと気づきがありました。このような経験はこれからの生活でも大切にしていきたいです。(1年 男子)
- ・僕は、この野外調査をする前と後で、確かに成長できたと感じています。調査に参加する前の自分なら、目の前の岩石を見て、何が起こってこの岩石がここに存在しているのかということは考えられなかったと思います。しかし、今の自分なら、岩石のできる順番や動きを、地質を見てイメージすることができます。さらに、それを面白いと感じることもできるようになりました。何事にも、「興味がない」の一言で終わらせるのではなく、とにかく「きっと面白いはずだ」と思って取り組んでみることが大切だと気づきました。今回のフィールドワークを通して、貴重な経験がたくさんでき、新たな学びもたくさんありました。(1年 男子)
- ・一番心配していたのは現地の人と英語で会話することでした。単語を聞き取って理解したり、こちらが日本人だとわかると現地の方が分かりやすいように話してくださったりして、聞き取ることは苦労しませんでした。しかし、話すこととなるとなかなか適した表現が出てこず詰まってしまうこともあったので、語彙を増やさなければと感じました。今回は共同生活だったので、普段自炊を全くしていないけど大丈夫なのかと思っていましたが、2年男子で集まって協力して栄養に偏りのない料理を作ることができたので体調を崩すことなく調査をすることができました。印象に残った食材は、やはりカンガルー肉で今まで食べたことがない味でとても新鮮でした。生活を通してみんなと仲を深めることができて、間違いなく日本では経験できないような11日間になったと思います。この経験をこれからの生活にも活かしていきたいです。(2年 文系男子)
- ・私は半端なく英語が不得意で心配でしたが、気づいたら喋っていました。ホテルの方はゆっくり喋ってくださったり、通りすがりの方が喋りかけてくださったりして安心して喋れた気がします。人の優しさにたくさん触れて嬉しかったので私も優しくなります。シドニーもナルーマも何でもかんでも広々している街並みが好きでした。動物をたくさん見て幸せすぎました。帰りたくなかったです。(2年 文系女子)
- ・中学生の時からずっと憧れていた海外だったので何を見ても感動していました。現地でも苦労をあまり感じずに生活できたと思います。ナルーマのアパートの管理人さんは川勝先生ですらよく理解できない独特の訛りのある英語を話されて怯えましたが、スーパーですごく親切にしていただいた

り、皆さんゆっくり話してとお願いすると本当に理解しやすいように話して下さり、優しさに感動していました。英語の語彙が少なく伝えたいことが伝えられないことがあり、これからの英語の勉強のモチベーションになりました。(2年 理系女子)

(コ)展開

本研修の最大の目的は、本格的な露頭調査であった。今後は、① 研磨岩石薄片を作成して偏光顕微鏡で観察を行う、② 京都大学と連携して EPMA 分析装置(Electron Probe Micro Analyzer)を用いて化学分析を行う、③ それらの結果から考察して論文にまとめる、④ 研究成果を世界で最も権威ある地球物理学の学会 American Geophysical Union(AGU)で発表することを目指した。一般に高校生が行う地学分野の研究は、野外調査→岩石記載→鉱物分析の一部分を行うものであるが、今回の研究は、専門研究者が行う研究活動と同じすべての過程を行うものであった。また、AGU は高校生発表会ではなく、専門研究者に交じっての発表となる。これは、高校生の研究が専門研究者の発表と肩を並べる学術的価値を持ち得るのかという挑戦であった。

この後の国内での研究活動では、野外調査によって採取した深成岩試料の角閃石から、幅 $1~\mu$ m の バンドが帯状に発達する「波状累帯構造」を発見することができるかどうかが重要なポイントであった。角閃石の波状累帯構造が発見されれば、海外で初めての発見となる。露頭調査から明らかになったマグマの相互関係から、角閃石の波状累帯構造発見の可能性は高いと推測され、これを指標として用いて推定するマグマ分化過程と、地質学的な方法による先行研究によって示されているマグマ分化過程が一致するのかどうか、あるいはさらに新しいマグマ分化過程の条件を明らかにすることができるのではないかと考え、引き続き国内での研究を行った。

5. アメリカ海外研修(学会発表)

(ア)発表の背景と目的

令和5年度に、本校の地球科学を中心にした国際的な活動として、「オーストラリア海外研修(露頭調査)」を行った。シドニーの南方約350kmのBingi Bingi pointを訪れ、5日間にわたって地質調査を行い、岩石試料を採取した。帰国後、持ち帰った岩石試料から薄片を作成し、偏光顕微鏡で1か月間にわたって辛抱強く観察を続けたところ、深成岩の角閃石から波状累帯構造という微細構造を発見した。海外の深成岩から初めての発見であった。これは、教科書に記載のあるマグマ分化過程の内容を覆す成果であった。

生徒の「発見で終わらせたくない」という強い思いが、この構造の成因や環境を推定する研究に発展させた。まず化学分析を行うことができるように、京都大学の先端研究を支援するプログラム COCOUS-R に応募して合格し、京都大学理学部の EPMA を用いて生徒自ら分析を行った。さらに中谷医工計測技術科学技術振興助成金に応募して採択され、研究費を獲得した。この資金をもとにした分析によって、この微細構造がマグマ分化末期の環境を示す指標であることを明らかにした。この成果は、日本学生科学賞中央審査会などの研究論文コンテストや、日本地質学会などの専門学会等で学術的価値の高い研究であると高く評

京都大学理学部での EPMA 分析

価された。これまで日本国内のジュニアセッションで数々の成果を上げてきたが、学術的価値の高い成果を得たことで、国際学会の場で(ジュニアセッションではなく)専門の研究者が発表する同じステージでの発表に挑戦することにした。高校生の研究が国際的な専門学会に通用するのかというチャレンジでもあった。世界中から約 27000 人の研究者が集まる世界最大級の地球物理学の国際学会

で、ワシントン DC で開催される国際学会 American Geophysical Union (AGU) を発表の場に選び、 論文を応募したところ、採択され現地で発表することができることになった。生徒が研究しているテーマに関する発表も数日間にわたって行われることから、発表するだけではなく、研究者の講演を聞いて議論することも目的とした。さらに、研究を深化させあるいは知識の裾野を広げるために、スミソニアン博物館群を訪問し、研究者と議論する機会を持つことにした。

(イ) 発表テーマ

Late Magma Differentiation at Bingi Bingi complex, Southeast NSW, Australia

Based on Oscillatory Zoned Structure of Amphiboles of Granitoids

(ウ) 実施日程

令和6年12月9日(月)~12月15日(日)の5泊7日(機内1泊)

- 12月9日 (月)
 - 5:00 JR 姫路駅南側ロータリーのバス内に集合
 - 5:10 JR 姫路駅 出発(貸切バス)
 - 6:30 伊丹空港 到着、搭乗手続き
 - 8:00 伊丹空港 出発 (ANA16 便)
 - 9:15 羽田空港 到着 (乗り継ぎ)
 - 10:40 羽田空港 出発 (ANA102 便)、機中泊
 - 9:10 ロナルドレーガン・ワシントン・ナショナル空港 到着、入国手続き
 - 10:00 ロナルドレーガン・ワシントン・ナショナル空港 出発 (メトロ) ウォルターE.ワシントンコンベンションセンター 到着 カンファレンス・ワークショップ、学会に参加、研究者発表の聴講と質疑応答
 - 17:30 ウォルターE.ワシントンコンベンションセンター 出発 (メトロ)
 - 18:00 ホテル 到着、Days Inn by Wyndham Washington DC
- 12月10日(火)
 - 8:00 ホテル 出発 (メトロ)
 - 8:20 ウォルターE.ワシントンコンベンションセンター 到着 学会に参加、研究者発表の聴講と質疑応答
 - 17:30 ウォルターE.ワシントンコンベンションセンター 出発 (メトロ)
 - 18:00 ホテル 到着、Days Inn by Wyndham Washington DC
- 12月11日 (水)
 - 8:00 ホテル 出発 (メトロ)
 - 8:20 スミソニアン国立自然史博物館 到着、研修
 - 17:30 スミソニアン国立自然史博物館 出発 (メトロ)
 - 18:00 ホテル 到着、Days Inn by Wyndham Washington DC
- 12月12日(木)
 - 8:00 ホテル 出発 (メトロ)
 - 8:20 スミソニアン国立航空宇宙博物館 到着、研修
 - 17:30 スミソニアン国立航空宇宙博物館 出発 (メトロ)
 - 18:00 ホテル 到着、Days Inn by Wyndham Washington DC
- 12月13日(金)
 - 8:00 ホテル 出発 (メトロ)
 - 8:20 ウォルターE.ワシントンコンベンションセンター 到着 学会でポスター発表、研究者発表の聴講と質疑応答

17:30 ウォルターE.ワシントンコンベンションセンター 出発 (メトロ)

18:00 ホテル 到着、Days Inn by Wyndham Washington DC

12月14日(土)

7:00 ホテル 出発(貸し切り専用車)

9:00 ロナルドレーガン・ワシントン・ナショナル国際空港 到着、搭乗・出国手続き

11:05 ロナルドレーガン・ワシントン・ナショナル国際空港 出発 (ANA101 便)、機中泊

12月15日(日)

15:25 羽田空港 到着 (乗り継ぎ)、入国手続き

18:00 羽田空港 出発 (ANA37 便)

19:10 伊丹空港 到着

20:00 伊丹空港 出発(貸切バス)

21:30 JR 姫路駅 到着、解散

(エ)場 所

ウオルターE. ワシントン・コンベンションセンター

(801 Mt, Vernon Pl.NW, Washington, DC 20001)

スミソニアン国立自然史博物館(Constitution Ave. bet. 9th &12th Sts. NW)

スミソニアン国立航空宇宙博物館(Independence Ave. bet. 4th & 7th Sts. NW)

(才)参加者

生徒: 2年次科学部生徒 4名(中田天晴、中村賢矢、永井翔、前川司)

引率:教員2名(川勝和哉主幹教諭/理科、平林友貴教諭/数学)

(力) 宿泊地

Days Inn by Wyndham Washington DC/Connecticut Avenue (4400 Connecticut Avenue NW, Washington DC, DC 20008)

(キ)内容

① AGU について

AGU(American Geophysical Union)はアメリカ地球物理学連合の略称で、国際的に最もハイクラスの学会である。100 を超える国から 27000 名以上の研究者が集い、口頭発表やポスター発表をするほか、さまざまな企画が展開された。高校生の発表は許されていないが、主顧問の川勝が学会会員であることから、川勝を First Author、高校生を Co-Author として発表に応募し、予稿提出の後に採択された。

② 事前提出の発表要旨

Late Magma Differentiation at Bingi Bingi complex, Southeast NSW, Australia

Based on Oscillatory Zoned Structure of Amphiboles of Granitoids

Hyogo Prefectural Himeji Higashi Senior High School Science Club Kazuya KAWAKATSU, Syo NAGAI, Tensei NAKATA, Kennya NAKAMURA, and Tsukasa MAEKAWA

Abstract

Bingi Bingi Point, located on the southeastern coast of New South Wales in Australia, is part of a complex pluton in which two different types of magma from the late Devonian solidified without complete mixing. The area is mainly composed of diorite, with tonalite making up the "cap" of the point. The diorite is penetrated by many hydrothermal veins emerging from the tonalite, and block- and spindle-

shaped xenoliths of diorite, which have been elongated by melting, are aligned along the contact surface between the two rock bodies. Both the diorite and tonalite are further intruded by aplite veins formed from homogeneous magma. Finally, basalt intrudes as well.


In the pale green rims of the amphibole crystals found in the diorite, which is influenced by hydrothermal solution from the tonalite, numerous Oscillatory Zoned Structure (OZS) developed across the c-axis of the crystals. OZS is a structure in which thin bands several μ m wide repeat like waves. OZS is characterized by the outer zone cutting the inner zone and by the parallel nature of non-continuous amphibole crystals, which suggests that hydrothermal solutions have circulated the outside of the crystals several times. No OZS is observed in the pale brown core. The rim has an irregular structure cause by recrystallisation fragmenting the original magnesio-hornblende core, with gaps filled by actinolite displaying OZS. The pale green rim, in which OZS has developed, coexists with euhedral magnetite, and sphene is found on the outer edge of the amphibole.

The coupled Edenitic substitution patterns in the OZSs dominate the amphibole and indicate an oxidizing environment. The Al^{VI} value is less than 0.6. It is a characteristic of hydrothermal solutions produced from, and dehydrating, saturated magmas. Fe $^{3+}$ in the M1-M3 sites comprises more than half the total of Na, Ti, and Fe $^{3+}$. The Fe $^{2+}$ /(Fe $^{2+}$ +Mg) value is 0.18 \sim 0.50 and the Mg/(Mg+Fetotal) gradually decreases from core to rim. The OZS contains low traces of Cl. This suggests that the pale green rim and the OZS developed due to the circulation of hydrothermal solution in an oxidizing environment.

OZSs of amphiboles are known to have been formed by circulation of hydrothermal solution, and this result is in good agreement with the results of the outcrop survey. OZS of amphibole is an indicator of the environment during the late-stage magma differentiation process.

keyword: magma differentiation hydrothermal solution xenolith
Oscillatory Zoned Structure (OZS) coupled substitution subsolidus

③ 講演スライド

What is Oscillatory Zoned Structure (OZS)?

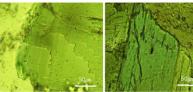


Fig. 1 OZS in an amphibole in diorite (2023)

OZS is a wave-like repeating structure of μm -order bands which develops across the growth axis (c-axis) of the crystal.

It is formed by ion substitution and secondary re-equilibration due the circulation of hydrothermal solution during late-stage magma differentiation.

Motive and Background

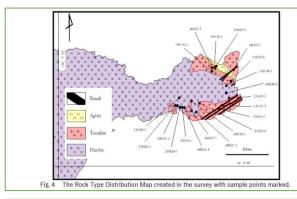
We did an outcrop survey in NSW, Australia

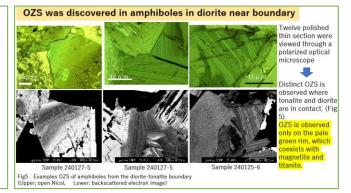
We modelled the environment during the late-stage magma differentiation from a mineralogical viewpoint

Bingi Bingi Point NSW, Australia

Bingi Bingi Point is an important area for studying magma differentiation processes as different magmas mixed incompletely here.

At the time of our study, no detailed mineralogical or metrological surveys had been conducted.


The Research Area



Bingi Bingi Point is located in New South Wales, Australia Co-ordinates: 036° 0' 50" S 150° 9' 22" F

The circumference of the area is about 1.5km

OZS was discovered in amphiboles of diorite away from the boundary

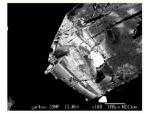


Fig6 Examples OZS of amphibole of diorite being off tonalite (Sample 240128-2)

OZS developed an irregular shape away from the boundary (Fig. 6)
Again, OZS can only be seen on pale green rim, not on the original "core" material.
The sample coexists with euhedral magnetite and titanite.

EPMA analysis of OZS

Electron probe micro analyzer (EPMA) analysis was performed with the cooperation of the Faculty of Science, Kyoto University.

This was done to analyze the chemical composition of the rocks.

Fig9 6 thin section with carbon deposition in vacuum

Fig10 EPMA analyzer JEOL JXA-8105 (Graduate School Faculty of Science, Kyoto University)

The coupled Edenitic substitution patterns in the OZSs dominate the amphibole and indicate an oxidizing condition.

10 µ m

The Al VI value is less than 0.6.

from dehydrating magmas.

a characteristic of hydrothermal solutions produced from saturated magmas undergoing dehydration.

Conclusions & Source of hydrothermal

Diorite solidified Tonalite magma intrudes and engulfs diorite, peeling it off.

We discovered a lot of **OZS** created by hydrothermal solution in amphibole

External OZS cuts across or deforms

→An effect of hydrothermal solution

Discussion

Thermal convection

elongates xenoliths

internal OZS

samples.(Fig8)

solution

Xenoliths are aligned to the

wall of cooled digrite

Fe $^3+$ in the M1-M3 sites comprises more than half the total of Na+Ti+ Fe $^3+$. The Fe $^2+/$ (Fe $^2++$ Mg) value is $0.18{\sim}0.50$ and the Mg/ (Mg+Fetotal) gradually decreases from core to rim.

The OZS contains low traces of Cl.

These are the characteristics of a pluton experiencing secondary re-equilibrium in an oxidizing condition.

All of the OZS in rocks...

Since OZS coexists with euhedral magnetite and titanite, OZS formed in oxidizing conditions under the subsolidus condition. We think that OZS is useful as an indicator of hydrothermal solution circulation of as OZS can develop regardless of era and region.

Tuesday, 1 October 2024

Dear Kazuva Kawakatsu.

On behalf of the AGU24 Program Committee, I am pleased to inform you that your abstract has been accepted for presentation at $\frac{AGU24}{4}$, taking place in Washington, D.C., and online from 9-13 December 2024. Thank you for your contribution to making the largest gathering of Earth and space scientists engaging and dynamic!

Your Abstract Details:

- Abstract Title: Late Magma Differentiation at Bingi Bingi Complex, Southeast NSW, Australia -Based on Oscillatory Zoned Structure of Amphiboles of Granitoids
- Presentation Type: Poster
- Session: MR51A: Principles of Geologic Storage: Geochemical Interactions, Geomechanics,

- Hydrodynamics, and Caprock Integrity I Poster

 Date & Time: Friday, 13 December 2024, 08:30 12:20 EST

 Location: Washington Convention Center, Hall D (Poster Hall)

*Your final paper number and poster board assignment will be provided in a separate email in mid-November.

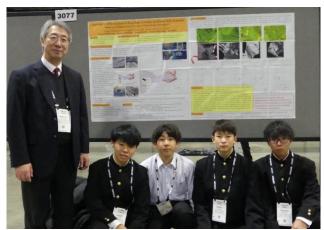
Please note, do not hang your poster prior to the day of your session. The poster hall changes daily, and all posters will be removed after 18:00 each day. If you do not remove your poster by 18:00 on the day of your session, it will be recycled.

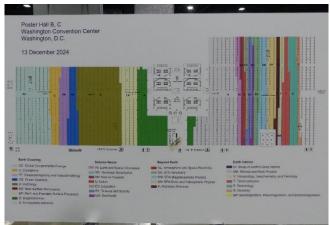
The full scientific program is now available. The official time zone for the meeting is 24-Hour Time Format/EST (Washington, D.C.).

Important Next Steps:

It is not possible to request an alternate presentation time. Your abstract has been assigned a poster presentation by the session conveners.

Follow the link below to the Speaker Center to:


- · Accept or decline your presentation by 6 November (early bird registration deadline).
- · Confirm if you will attend online or in person.
 - The deadline to update your presentation location from virtual to in-person (or vice versa) is Friday, 15 November. If registered, presenters must also change their registration type from virtual to in-person (or vice versa) by 15 November 2024.
 - Starting 16 November, a \$50 change fee will apply for registration changes to change your


採択通知

④ ポスター発表

2024年12月13日(金)8:30~12:20にHall B-C でポスター発表を行った。25 名をこえる研究 者が訪れ、生徒は1対1でしっかり説明し、熱い議 論を展開した。質疑応答も活発で、何とか研究内容 を伝えようとする熱意が伝わったのか、アメリカの 大学への進学を勧められる生徒もおり、この研究の ブースには他のブースに比べて多くの研究者が集 まり、特別な活気に満ちていた。

発表会場に設置されたスライドビジョンとホール B-C 会場の一部のようす

Late Magma Differentiation at Bingi Bingi Complex, Southeast NSW, Australia Based on Oscillatory Zoned Structure of Amphiboles of Granitoids

Hyogo Prefectural Himejihigashi Senior High School, Science Club, Japan Kazuya KAWAKATSU Kenya NAKAMURA Tensei NAKATA Tsukasa MAEKAWA Syo NAGAI

Keywords Hydrothermal Solution Oscillatory Zoned Structure (OZS) Coupled Substitution Subsolidus Condition

Oscillatory Zoned Structure

A repeating structure of μm-order bands across the growth axis of a crystal. Forms due to ion substitution and recrystallisation as hydrothermal solutions circulate in late-stage magma differentiation.

Overview of Research Area

Bingi Bingi Point is in New South Wales, Australia (36°0' 50"S, 150° 9' 22"E, Fig. 1), located in the Lachlan Fold Belt and a part of the Moruya Batholith. The area is largely comprised of two different types of magma from the late Devonian. Aplite veins, four meters wide, intrude into the plutonic rock. Basalt magma intruded 30 million years ago(Fig. 2).

Fig. 1 Bingi Bingi Point (source: Google Earth

Overview of Rock Types

(1) Diorite Euhedral amphiboles and quartz pegmatite crystallized due to residual magma activity at interfaces (Fig. 3)

(2) Tonalite Contains diorite xenoliths that are cubic near the interface but elongate further from (Fig. 4). Fine-grained mineral deposits found near the xenoliths indicate they were heated by the tonalite magma.

Xenoliths show strike that is nearparallel to the diorite-tonalite interfaces (Fig.5).

(3) Aplite veins Aplite veins intrude tonalite and contain xenoliths of both diorite and tonalite(Fig. 6).

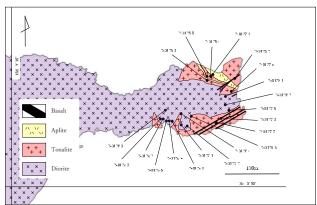
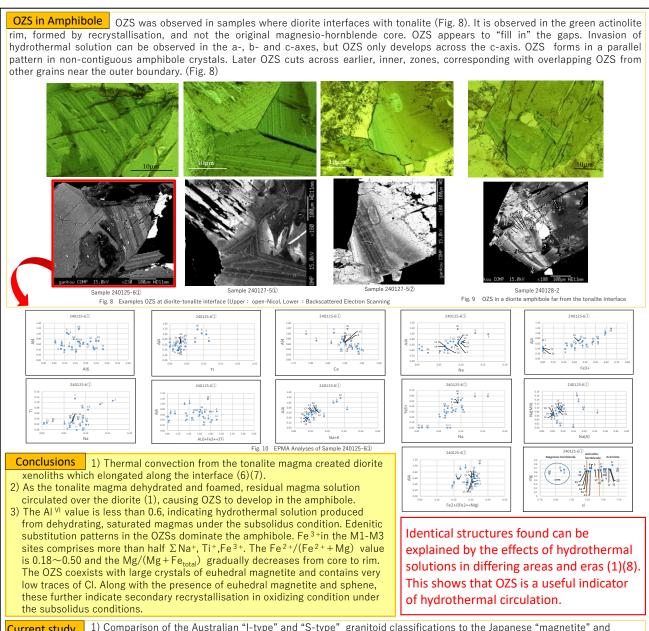


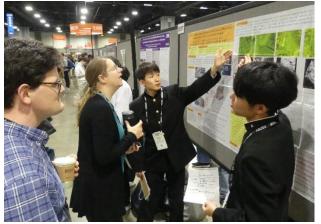
Fig. 2 Rock-type Map & Sample Points

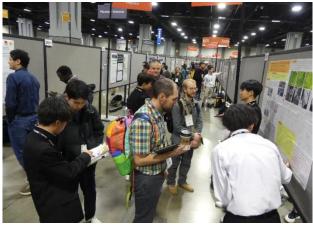
(4) Basalt


Three parallel veins, two black and one oxide red, intrudes linearly across diorite and tonalite (Fig.7). Northern veins include aplite xenoliths of all three and aplite shows thermal effects near interfaces.

Acknowledgements

Our thanks to Professor Tetsuo KAWAKAMI, Assistant Professor Fumiko HIGASHINO, and MSc student Miku NAKANO of Kyoto University for their assistance with EPMA analyses and invaluable advice.


- References (1) Kawakatsu, K. and Yamaguchi, Y. (1987) Geochim.Cosmocim.Acta, 51,535-540. (2) Prendergast, E.I. (2007) Australian J.Earth Sciences, 481-501. (3) Prendergast, E.I., Offler, R. and Zwingmann, H, (2012) Australian J.Earth Sciences, 1-18.


- (4) Whalen, J.B. and Chappell, B.W. (1988) Amer.Mineral,73,281-296. (5) Branagan, D.F. and Packham, G.H. (2000) Published by New South Wales Department of Mineral Resources, Sydney, 317-319.
- (6) Wiebe, R.A. and Collins, W.J. (1998) J.Struct.Geol.,vol.20, 1273-1289. (7) Smith, J.V (2004) J.Struct.Geol.,26,1317-1339.
- (8) Hyogo Prefectural Himejihigashi Senior High School Earth Science Club (2023) Abstract of the 128th Academic Conference of the Geological Society of Japan.(in Japanese)

Current study 1) Comparison of the Australian "I-type" and "S-type" granitoid classifications to the Japanese "magnetite" and "ilmenite" classifications.

2) Estimation of hydrothermal solution temperature and pressure from oxide minerals and feldspar that coexist with OZS amphibole.

発表のようす

⑤ スミソニアン国立自然史博物館研修

1910年に開館した、スミソニアン博物館群の中で最も古い博物館である。展示数は約1億4800万点で、テーマ別にエリアが分かれている。アフリカゾウのはく製、世界最大のブルーダイヤ「ホープダイヤモンド」、マリーアントワネットのダイヤのイヤリング、ティラノサウルスの化石、エジプトのミイラ、アウストラロピテクス・アフリカヌスの頭蓋骨、世界各地の岩石・鉱物や隕石、科学技術の発達と環境問題など、多くの貴重なコレクションを見ることができた。あちこちで研究者が研究活動を行っており、互いに議論したり助言を得たりすることができた。

スミソニアン自然史博物館研修

⑥ スミソニアン国立航空宇宙博物館研修

1946年に設立された博物館で、ライト兄弟の「1903 ライトフライヤー」やアメリカ発の全金属製の旅客機「ノースロップ・アルファ」、「ボーイング 747 ジャンボジェット (機首部分)」など、初期の飛行機から最新のジェット機まで各発達段階の実機を見ることができた。また、アポロ 11

号の司令船「コロンビア」の実際の宇宙船や宇宙服、実際に使われてきた探査機、小惑星リュウグウも見られた。残念ながら展示館の半分が改装工事中であったが、それでも見ごたえ充分であった。これらの中には、電磁気学に関する展示も多くあり、磁性流体班の生徒は、あちこちの退役軍人や NASA を引退した研究者等と有益な対話を行った。

スミソニアン国立航空宇宙博物館研修

(ク) 振返り

生徒による研究が、国際的に通用するのかどうかの挑戦であったが、多くの研究者に認められ、活

発な議論を行うことができた。フィールドの選定から、鉱物構造の新発見、分析手段と資金の確保、 論文の執筆、学会への応募と採択、そして発表成果の獲得と、一連の企画は「出る杭」の生徒を大い に育成することに資するものとなった。

(ケ)参加生徒の感想

・ スミソニアン自然科学博物館ではたくさんの生き物の展示や僕たちの発表にも関係する地学の展示もありました。一周した後、二周目に先生と回った時は、単斜晶系や等軸晶系などの鉱物の構造を理解することができました。ここに来るまで全然知らなくて、地学の研究は周辺の知識も本当に大切になってくると考えました。またこのような展示はいろんな見方によってもっと面白いものになるんだと改めて気づきました。国立航空宇宙博物館ではライト兄弟のことやアポロ宇宙船を見学しました。ライト兄弟が空を飛んでから60~70年で月面着陸まで発展したことがとても驚きました。宇宙服の実物を見せてもらったときスタッフと話しました。宇宙服には磁性流体も使われていてどういう風に使われているのかなど詳しく聞くことが出来て良かったです。ほかにもブラックホールに関する話もして知識を深めるとともに現地の人と英語で会話が出来ました。

そして AGU の発表です。前日はみんなで夜中まで打ち合わせをして、当日いい発表が出来るように準備してきました。会場は見たことないくらい広くて人数もとても多かったです。これまで国内の学会で何回も発表してきて、その時も緊張はしていたのですが、今回は比較にならないくらい緊張しました。みんなでこれまでたくさん頑張ってきたし、先生や仲間のため、これからの人生で自分が自信をもって生きていけるように絶対に悔いのないような発表にするという思いでした。発表は僕たちが日本の高校生であることもあり、多くの方が聞きに来てくれました。最初は話しかけることもできませんでしたが、だんだん話すことに対しても楽しくなり、聞いてくれた方も優しく対応してくれ、coolなど発表に関しても多くの人が褒めてくれたのでもっと発表していきたい!という気持ちになれました。これまで AGU に向けて仲間や先生に助けられながらも頑張ってきた成果が出て本当にうれしいです。終わった後の皆の表情も全力を出しきったように見えました。本当にこの発表にかけていた想いは全員大きなものだったと思います。

・ 今回このアメリカ海外研修に参加して本当に良かったと思います。アメリカは、今回の研修の目的である地学の世界最大の学会である AGU が開催されているなど、今の世界を構成する中で本当の世界の中心なのだと感じました。そのような場所で様々な物を見て知見を深めることが出来たことは私にとって大きい経験になりました。

アメリカに到着して AGU に向かう前からこの学会は国内の学生が参加する学会とは比較にならないと分かってはいましたが、今思うと私はきっと AGU に参加することの意味がまだ理解しきれていなかったと思います。到着して周りを見てその会場の規模に、集まる科学者の数に、研究者の研究内容に、発表会場の緊張感に、そして何より学校で見たことない会場に入るときの川勝先生の真剣な表情を見て、私は事の重大さを認識しました。月面調査に関する研究で約7年かけて研究を行ってこの会場に来ている研究者もおり、川勝先生は私たち生徒と一緒にAGU に立つ計画を何年もかけて遂行し、さらに言うと、今回の研究は、先生が大学生時代からの研究を引き継いで30年以上脈々と続いてきたもので、この大会に参加している研究者は、まさに人生をかけてここに来た人達なのだと思い、緊張で毎日大変でした。

スミソニアンの自然史博物館で印象的だったのは火山や鉱物のコーナーです。1周目は仲間 4 人で回りました。勉強して知っている事や今回の私たちの研究と関係する部分も多く見られたのでとても興味深かったです。そして 2 周目は仲間 4 人と川勝先生とで見て回りました。先生は岩石鉱物学の専門家なので知識の次元が違いました。展示 1 つ 1 つに関する理解が深すぎて解説を聞く度に 1 周目とまるで違う展示物を見ているのかと思いました。次に訪れたのは航空宇宙博物館です。私は元々天文学や宇宙に興味があったのでここも私にとってとても楽しい場所でした。驚き

だったのはライト兄弟が初めて空を飛んでからアームストロングが初めて月面に着陸するまでの早さです。ここの間は約70年ととても短く、それだけ人類の空や宇宙への憧れは強かったのだろうと思いました。さらにアポロ計画時の音声データが聞けるブースがあり、そこが一番面白かったです。まだ月に初めて降り立った足跡が残っているのが衝撃でした。ここでの目的はスタッフと磁性流体の話をすることでした。私達が国内で研究している磁性流体は、元々アポロ計画のときにNASAの宇宙開発によって開発されたものなのでそれについて話がしたいと思い、スタッフに話しかけました。自分たちは日本の高校生で磁性流体の形状の変化について研究していると伝えたら非常に喜んでくれました。

いよいよ AGU 本番です。この日までの研修期間中もずっと学会のことが頭にありました。私は昔から集団で何かをすることがあまり好きではありませんでした。もちろん友達と遊んだり大人数で話したり、人と接することは好きでしたが、結果を求めて何かをする時には決まって個人での活動を選ぶようにしていました。これは1人の方が気が楽だという思いが強いからだと思います。自分のせいで他人に迷惑をかけたくない、誰かをがっかりさせたくないという思いが根底にあります。しかし私は高校2年生から科学部に入って、初めて仲間とひとつの目標に向かって何かをする楽しさを知りました。私に居場所を与えてくれた前部長や川勝先生には心から感謝し、尊敬しています。そのために、今回の学会は下手な事をする訳にはいかないという思いがありました。本当に不安だったのは、きちんと研究内容を伝えることができるかどうかでした。結果、多くの人が私たちの研究を聞きに来てくださって、成功と呼べるものだったと思います。高校生なのにAGUに立っているなんて信じられない、と非常に多くの人が言ってくださいました。しかし内容に共感してもらったり、私たちの研究の価値が本当に伝えられたかどうかという部分においては十分ではなかったように思います。きっと先生が発表したらもっと多くの人に本当の意味で研究に対する議論が生まれたと思います。こんな所まで高校生を連れてきたファーストオーサーは一体何者なんだ、非常に素晴らしいという海外の方も少なくなかったので、発表は成功だったと思います。

今回のアメリカ海外研修に参加して本当に良かったと思います。感じたことの無い思いや世界の中心を見ることが出来て光栄です。ちょうど 1 年ほど前、オーストラリア研修の紙を見て参加したいと思って行動したことは、自分の人生を変える決断であったと思います。家族や一緒になって頑張った科学部の仲間には心の底から感謝しています。私は本当に人に恵まれたと思います。

・ 今回のアメリカ研修を通して感じたのは、自分の気持ちを伝えようとする事の大切さと、国際学会の難しさです。さまざまな博物館を回って、ホテルのフロントの人と話して、国際学会で発表する過程で、英語で会話する機会がたくさんありました。英語が苦手なせいで苦労したことはたくさんありました。しかし、話しかけたときは「それってこういうこと?」と熱心に聞いてくれました。熱心に話を聞こうとする気持ちと、伝えようとする気持ちが相手に伝わって会話ができたのだと思います。

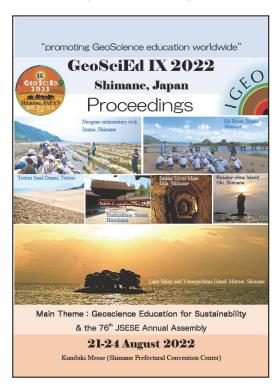
スミソニアン自然史博物館では、主に僕たちの研究について学びを深めました。岩石のでき方、鉱物の構造など、さまざまな展示物を川勝先生の解説付きで学ぶことができました。次の日のスミソニアン航空宇宙博物館では、ライト兄弟の飛行機の歴史や、宇宙開発のへ歴史を学びました。特にライト兄弟のコーナーでは、ライト兄弟の発想が、当時としては奇抜な発想だったということが印象的でした。何事も探究というのは熱意、ひらめき、そしてそれを実行する力が必要なのだと再確認しました。そして最終日のAGUでの発表では、話を聞こう、伝えようとする気持ちの大切さ、そして国際学会の難しさを感じた一方、達成感と楽しさは今までの人生の中でも特に大きかったです。なぜこの地域について研究しようと思ったのか、いったいこの分析をしてどんな事がわかって、どんな効果があったのか、この研究の意義は何なのか、たくさん話して、「よく分かりました、いい研究ですね。」と言って帰ってくれたときは今までに感じた事がない達成感と、楽しさと、発

表に来て良かったという気持ちが残りました。

発表する前は正直、川勝先生と先輩方の研究を間違いなく伝えよう、先生の顔に泥を塗らないようにしよう、というプレッシャーが大きかったです。しかし、発表の前日の夜、川勝先生から伝えようとする気持ちを強く持てという話を聞きました。いつも、先生の話を聞くとなぜかやる気に満ちてきます。その時から、絶対にこの研究を認めてもらうんだという強い決意を持つ事ができました。その日は朝まで発表と質疑応答の準備をしました。そうして本番、ほとんどの人に伝えたいことを伝えることができて、議論もできて、本当に楽しい4時間を過ごしました。終わったあとは達成感でいっぱいでした。今回の研修では、聞く、伝える気持ちの大切さ、厳しさ、楽しさ、いろいろなことを経験しました。これらの経験を活かして、もっと努力できる人になります。

(コ)展開

高校生対象の研究発表会では、オリジナリティーがどこにあるのか、社会にどのような役割を持つ研究なのかについての説明が求められる。またポスターの文字数を少なくするように指摘される。研究者の学会では指摘されないことを高校生では指摘されるので違和感を覚えることが多い。高校生セッションの多くは、高校生を評価するという観点で発表を聞かれるので、先端的な研究だと「本校に君たちがやった研究なのか」とか、「高校生にできるはずがない」、「身の丈に応じた研究をしなさい」と注意されたりする。SSHは「出る杭」となる生徒を発掘し育成することを目指すものであるならば、いっそ研究者の学会発表や学会誌への掲載を目指すことが、これからの「出る杭」となる生徒の育成にとってプラスになるのではないかと考える。来年度以降は、生徒の強い希望で、ニュージーランドの深成岩体について研究を行い、世界的な広がりにしていきたい。


6. 第91回国際地球科学教育学会

(ア)発表の背景と目的

地球科学(地学)は Earth Science と呼ばれており、自然を包括的に学ぶ科目であるため、理科の基礎科目を分野横断的に学ぶためにはもっとも適している。また、現代は地学の内容を学ぶ必要性が高まっているにも関わらず、地学基礎および地学の講座が開講されている学校は少なく、地学を専門とする教員の採用もほとんど行われていない。さらに、本校は兵庫県南部地震(阪神淡路大震災)の震源域付

近に立地しており、震災の教訓を語り継ぐ教育が求められている。これらのことから、本校の理科教育は、1年次で物理基礎と生物基礎を地球科学分野をベースにして統合的に学ぶ「自然科学探究基礎I」を、2年次では地球科学分野をベースにして化学基礎を学ぶ「自然科学探究基礎II」を学校設定科目としている。自然災害について、単に災害時の行動や防災に備えておくだけではなく、自然災害の理論的理解を教育の両輪とすることによって、防災や減災への効果的な取組につながることから、自然科学探究基礎Iでは、北淡震災記念公園野島断層保存館で理論的理解を、また人と防災未来センターで社会行動学的対応を学ぶ。

兵庫県立大学理学部の紹介で、日本国内で国際地学教育学会が開催されることを知った科学部の生徒は、本校のユニークな理科教育について講演したいと希望し、応募することになった。この学会では、高校生発表(ジュニアセッション)も開催されていたが、本校は研究者の発表枠で申請し、受理されて口頭発表することになった。

(イ) 発表テーマ

Learning about Disaster Prevention in High School
— Scientific Understanding of Natural Disasters
and Acquisition of Knowledge of Disaster
Prevention Behavior—

(ウ) 実施日程

令和4年8月23日(金)~24日(土) 9:00~12:00 発表は国際同時配信された

(工)場 所

島根県国際会議場くにびきメッセ

(才)参加者

生徒:岸上栞菜、志村実咲、菅原楓(科学部2年女子)

引率:川勝和哉(主幹教諭/理科)

(カ)内容

① 国際地球科学教育学会について

国際地球科学教育学会(GeoSciEd)は国際地学教育機構(IGED)が主催する4年に1度の国際会議で、世界中の地学教育委関係者や研究者が集ま

| Schedule (大会スケジュール) | Mit: Multipuppese Hall, SH Small Hall | 15-20 August | 12-20 August |

り、各国における地学教育の新しいアイディアや実践などの情報を共有する場である。第9回島根大会は、東アジアで初の開催となった。高校生による発表枠ではなく研究者の発表枠で講演した。

口頭発表後に多くの海外の研究者から質問 が飛んだ

② 発表要旨

IX GeoSciEd 2022 – the 9th International Conference on Geoscience Education

Geoscience Education for Sustainability –
 Matsue – Shimane – Japan, August 2022

Learning about disaster prevention in high school -Scientific understanding of natural disasters and acquisition of knowledge of disaster prevention behavior-

K. Kawakatsu*; A. Mitsui; N. Kodama; T. Maeda; H. Nakanou; A. Tada; Y. Muromoto; K. Kishigami; H. Gotou; K. Motowaki; Y. Nishino; T. Satou; M. Shimura;
K. Sugawara; K. Takada; T. Takeuchi; Y. Takeuchi; N. Yamaura; Y. Yokoo; R. Yoshida Honmachi 68-70, Himeji-city, Hyogo Prefecture, Japan kazuya-kawakatsu@hyogo-c.ed.jp

Our school is located near the epicenter of the Southern Hyogo Earthquake that occured on January 17, 1995. As the years pass by, lessons learned have started to be forgotten. The main lesson we learned from the disaster is that it is necessary to understand the natural world scientifically and to practice disaster prevention activities as an individual and societal scales to protect ourselves from disasters (Fig.1).

Japan has many natural disasters (such as earthquakes, volcanic eruptions, tsunamis and

typhoons) and students are taught how to prepare for and respond to them. Aside from those practical considerations, students learn about the underpinning scientific theories of such disasters in earth science classes. However, students don't study the four natural science (chemistry, physics, biology and earth science), but only choose to study 2 or 3 subjects from them. Therefore, students who don't choose earth science have no opportunities at school to learn the mechanisms behind disasters. In modern Japan, very few schools offer earth science courses so many students are denied the opportunity to understand the theory of natural disasters.

Our school has been designated as a Super Science High school (SSH) since April 2020. The SSH program designates high schools that focus intensively on math, science and technology education. It implements advanced math and science education programs in high schools and assigns additional funding to further develop the abilities of students. In addition, it also develops teaching methods and materials which develop students' creativity and originality.

The most important research and development theme of our school is "International Activities centered on Earth Science". Our school has set up "Basic Inquiry-Based Study of Natural Science" (worth 4 credits in 1st grade and 2 credits in 2nd grade) to encourage comprehensive across the four fields of science (chemistry, physics, biology, and earth science) with a focus on earth science. Here is also "Inquiry-Based Study of Science and Mathematics" (1 credit in 1st grade, 2 credits in 2nd grade and 1 credit in 3rd grade) research based on earth science. In this system, all students study across the four fields of natural science as well as mathematics and so they can come to understand natural phenomena and natural disasters comprehensively. In "Basic Inquiry-Based Study of Natural Science", students actually go out and get hands-on experience earth sciences. In 2021, a group of students investigated the Nojima Fault which was responsible for the Southern Hyogo Earthquake and visit the Disaster Prevention Future Center. We learned about disaster prevention and mitigation techniques there. We conducted a survey on students who participated about these activities. The results shows that our school's efforts is significant [1]. We would like to show the country the fruits of our labour nationwide.

Keywords: Southern Hyogo Earthquake; mechanisms; activities

References: [1] Himejihigashi Senior High School (2020) R & D implementation Report

③ 口頭発表

Learning about Disaster Prevention in High School

-Scientific understanding of natural disasters and acquisition of knowledge of disaster prevention behavior-

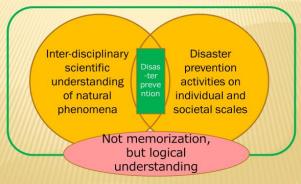
K.KAWAKATSU, A.MITSUI, N.KODAMA, T.MAEDA, H.NAKANOU, A.TADA, Y.MUROMOTO, K.KISHIGAMI, H.GOTOU, K.MOTOWAKI, Y.NISHINO, T.SATOU, M.SHIMURA, K.SUGAWARA, K.TAKATA, T.TAKEUCHI, Y.TAKEUCHI, N.YAMAURA, Y.YOKOO, R.YOSHIDA

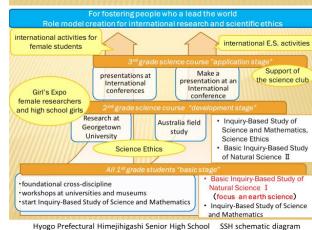
HYOGO PREFECTURAL HIMEJI-HIGASHI SENIOR HIGH SCHOOL SHIMURA MISAKI, SUGAWARA KAEDE, KISHIGAMI KANNA

On the earthquake education

Do you know this disaster?

January 17, 1995


- Disaster prevention/Disaster aid prep
- hazard maps
- earthquake insurance
- earthquake-resistant building
- shelter locations and evacuation route
- prepare disaster prevention goods



When a disaster occurred, ...

- Should we just think about the time when a disaster occurred?
- we cannot think about disaster prevention or mitigation without knowing how disasters occur

What is needed for disaster prevention?

BY THE WAY...

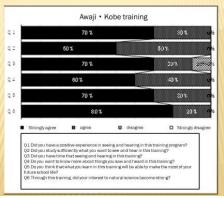
- Physics, chemistry, biology, and earth science are overlapping fields.
- We cannot understand nature without learning comprehensively.
- Developer is history →science→engineering
- Program that only SSH can do.

Basic Inquiry-Based Study of Natural Science

≠the simple union of basic subjects

=using ES as a base foundation

To learn base in basic subjects and link with the earth science through experiments and observation


BASIC INQUIRY-BASED STUDY OF NATURAL AND BASIC INQUIRY-BASED STUDY OF SCIENCE AND MATHEMATICS I

Gain a broad perspective and basic knowledges in Basic Inquiry-Based Study of Natural

Practice concretely in basic Inquiry-Based Study of Science and Mathematics

- Logical & critical thinking (hypotheticol deductive method)
 Discussion & debate abilities
- Presentation ability to tell other people
- Ability to show objectively by mathematics (statistics, probability
- language skills to communicate with others

QUESTIONNAIRE

WHY "BASED ON EARTH SCIENCE?"

We find it necessary to learn interdisciplinary science. But...

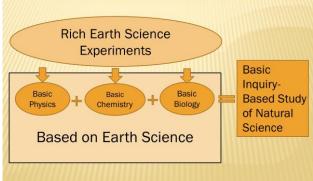
Why do we use earth science as a base?

Experiencing the H-A Earthquake gives us a unique perspective.

BASIC INQUIRY-BASED STUDY OF NATURAL SCIENCE

- Students work to gain a comprehensive cross-discipline understanding of basic science natural.
- Earth science are representive.
- Students study mainly basic physics and basic biology earth science comprehensively.
- Students study mainly basic chemistry comprehensively in natural science basics of 2nd grade.

FOR TO TAKE ROOT NATURAL SCIENCE


Hokudan Earthquake Memorial Park Nojima Fault Preservation Museum

CLASS DEVELOPMENT

(キ)振返り

初めての国際会議出席と発表であったため、しっかりとした準備をして当日の発表に臨んだ。いつもは周囲に多くいる高校生の姿はなく、多くの国内外の研究者の前であったが、事前のしっかりとした準備の成果が出て堂々と発表した。本校の分野横断的な理科教育と防災・減災の教育について、生徒の目線から評価する内容であったことから、海外の多くの研究者から質問が飛び、しっかりとした議論を行うことができた。同時国際配信によって世界に報じられたことは、その後の本校の国際学会参加への道を示す発表となった。

(ク) 参加生徒の感想

高校生ジュニアセッションのポスター発表も選択肢にはありましたが、兵庫県立大学の川村教一先生や科学部顧問の川勝和哉先生の勧めもあって、研究者のステージでの発表を選択して申し込みました。発表できるとなると準備が大変でした。教科や科目の名称は馴染みがなく、また生徒の目線で授業内容についてどう考えるか、という質問は予想してはいたものの、かなり深くつっこまれて、あたふたする場面もありました。それでも自分の英語がこのような場で通じることがわかって、とてもうれしく思いました。これからも世界を目指して頑張って行きたいと思います。

(ケ)展開

生徒も感想で書いているが、この国際学会への参加が、その後の本校の取組の道をつくったといえる。今後は高校生ジュニアセッションにとらわれず、研究成果を発表する適当な場があればチャレンジさせていきたいと考えている。

7. 国際学会誌「Journal of Modern Education Review」に論文掲載

(ア)発表の背景と目的

国際地学教育学会での口頭発表が高い評価を得て、学会から論文を投稿するように推薦があった。本校の自然教育について肯定的であった生徒は、世界の理科教育の参考にしてほしいと考え、発表生徒は研究論文にまとめて投稿したしたところ、査読を通過して論文が掲載された。国際学会誌に研究論文が掲載された最初の論文となった。

(イ) 論文テーマ

Disaster Prevention Education : Combining Scientific Understanding of Disasters with Knowledge of Disaster Mitigation Strategies

(ウ) 著 者

Kazuya KAWAKATSU, Kanna KISHIGAMI, Misaki SHIMURA, Kaede SUGAWARA

(エ)内容

Journal of Modern Education Review, Vol.13, No.1, 1-9.

(オ)振返り

Academic Star Publishing Company

1830 Avenue M Suite #1068, Brooklyn, NY 11230, USA

TEL: 347-566-2153 FAX: 646-619-4168

Paper Acceptance Notice

January 14th, 2023

Dear Kazuya KAWAKATSU,

Congratulations! After a thorough double-blind review, we are pleased to inform you

"Disaster Prevention Education: Combining Scientific Understanding of Disasters

with Knowledge of Disaster Mitigation Strategies." (JMER20221223-1, 1st submission received: 23/12/2022) has been formally accepted for publication in a forthcoming issue of Journal of Modern Education Review (JMER).

Kindly acknowledge receipt of this acceptance letter.

Best regards

January 14th, 2023

Disparing of Disaster Mitigation Strategies." (JMER20221223-1, 1st submission received: 23/12/2022) has been formally accepted for publication in a forthcoming issue of Journal of Modern Education Review (JMER).

Kindly acknowledge receipt of this acceptance letter.

Best regards

January 14th, 2023

論文の採択通知

教育関係の論文を多く出版している学術誌である。生徒と科学部顧問、本校のネイティブの教員で何度も英文の内容と表現をポリッシュアップし、エディテージも指摘を修正したうえで投稿した。その結果査読を通過し、掲載された。

Journal of Modern Education Review, ISSN 2155-7993, USA January 2023, Volume 13, No. 1, pp. 1–9 Doi: 10.15341/jmer(2155-7993)/01.13.2023/001 © Academic Star Publishing Company, 2023 http://www.academicstar.us

Disaster Prevention Education: Combining Scientific Understanding of Disasters with Knowledge of Disaster Mitigation Strategies

Kazuya Kawakatsu, Kanna Kishigami, Misaki Shimura, Kaede Sugawara (Hyogo Prefectural Himeji Higashi Senior High School, Honmachi 68-79, Himeji City, Hyogo Prefecture, Japan)

Abstract: Himeji Higashi High School is located near the epicenter of the 1995 Southern Hyogo Earthquake. The occurrence of these tragedies stresses the necessity to scientifically understand disasters and develop and implement disaster prevention actions at both the individual and societal levels. It is our belief that we cannot properly prepare for or mitigate disasters without understanding how and why they occur. Such knowledge is gained through Earth science education, which synthetically interweaves all three natural sciences to facilitate a deeper theoretical comprehension of natural disasters. Himeji Higashi's Super Science High School program aims to provide interdisciplinary scientific education to foster students' comprehensive understanding of natural phenomena and consolidate their related learning. Students learn by selecting specific subjects of disaster prevention and mitigation to study. In addition, students understand the mechanisms of natural disasters in class and experience disasters through museum training. A questionnaire was administered to the students upon completion of the program. The results showed that indicates the program is promising and may have had a positive impact on students. More than 85% of students were satisfied with our educational program, and we can expect that they will understand nature and work for disaster prevention and mitigation themselves.

Key words: Southern Hyogo Earthquake, Natural Science, disaster prevention, disaster mitigation

1. Introduction

Himeji Higashi High School is located near the northern tip of Awaji Island, which was the epicenter of the Southern Hyogo earthquake (i.e., commonly the Hanshin-Awaji earthquake). This earthquake occurred at 5:46 AM on January 17, 1995, killing 6,434 people. It caused widespread devastation, particularly in the built-up urban areas of Kobe city, such as Sannomiya or Motomachi (Figure 1). However, as years passed, the lessons learned were forgotten to the point that interest in disaster prevention is waning, especially in generations that have never experienced such disasters.

Japan's disaster prevention and mitigation education is only briefly addressed in Earth science textbooks, and only touches on advance preparation and actions to take in the event of a disaster. This kind of education, which does not cover the mechanisms by which disasters occur, produces students who fear nature. Moreover, not all students study Earth science as a mandatory subject in Japan. However, disaster victims point out that it is important to understand and coexist with nature to prevent and mitigate disasters.

]

Kazuya Kawakatsu, Master of Science, Principal Teacher at Hyogo Prefectural Himeji Higashi Senior High School; research areas: science education and science ethics. E-mail: kazuya-kawakatsu@hyogo-c.ed.jp.

Disaster Prevention Education: Combining Scientific Understanding of Disasters with Knowledge of Disaster Mitigation Strategies

Figure 1 Images of the Devastation in Kobe City

Therefore, the authors believe that successful disaster prevention and mitigation involves developing a scientific understanding of the natural world and the mechanisms at play in disasters (Figure 2). Based on this, stakeholders can then undertake the vital process of developing, refining, implementing, and practicing disaster prevention and mitigation strategies at both the individual and societal levels.

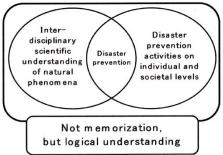
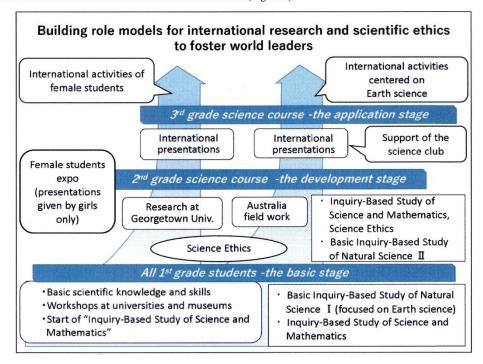


Figure 2 Concepts Necessary for Disaster Prevention Education

Natural disasters, including earthquakes and typhoons, occur at a high frequency in Japan, and students are


2

Disaster Prevention Education: Combining Scientific Understanding of Disasters with Knowledge of Disaster Mitigation Strategies

taught how to prepare for and respond to them. This education includes practical measures, such as preparing disaster stocks and teaching students how to understand hazard maps, evacuation routes, among others. Meanwhile, Earth science education weaves natural sciences (i.e., chemistry, physics, and biology) to provide students a deeper understanding of the Earth and its natural disasters. However, few students study Earth science as it is not a widely offered subject. Furthermore, many students do not have the opportunity to study all natural sciences (chemistry, physics, and biology). Japan students cannot freely select natural science courses because their curricula already involves many compulsory subjects. To address the situation, Himeji Higashi High School has implemented a new curriculum to promote a deeper, interdisciplinary understanding of the natural world. The current report is a part of various efforts to disseminate the results of this endeavor to wider audiences.

2. Synthetical Understanding of Natural Sciences in Earth Science

Our school has been designated as a Super Science High School since April 2020 by the Science and Technology Council of the Ministry of Education, Culture, Sports, Science and Technology (2009). The Super Science High School program targets the development of science, technology, engineering, the arts, and mathematics (also known as STEAM) subjects by funding and implementing advanced programs to develop the ability, creativity, and originality of each student covered by the program. Himeji Higashi High School's particular focus is International Activities centered on Earth Science (Figure 3).

Disaster Prevention Education: Combining Scientific Understanding of Disasters with Knowledge of Disaster Mitigation Strategies

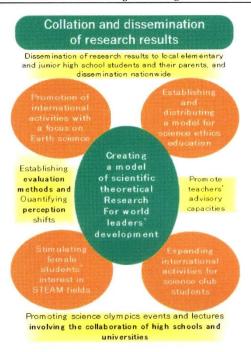


Figure 3 Super Science High School Research and Development

Our school independently began conducting the "Basic Inquiry-Based Study of Natural Science" and "Inquiry-Based Study of Science and Mathematics" courses to promote comprehensive learning across the four fields of science (chemistry, physics, biology, and Earth science) with a particular focus on Earth science, and help students understand natural phenomena and disasters (Figure 4).

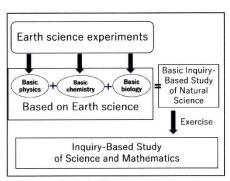


Figure 4 Class Development

Through these two courses, students develop logical thinking (e.g., hypothesis formation and deductive

4

reasoning) and the ability to use, present, and analyze data objectively through appropriate use of statistics and probability laws. Presentation and communication abilities in both Japanese and English are also refined, so that students can learn both how to effectively relay their ideas to others and discuss and debate ideas.

The following example serves to illustrate the goal of this curricula: to combine the study of natural sciences and synthesize a deeper understanding of a topic. In physics classes, students conduct experiments that help them understand the roles of gravitational and rotational forces in forming the Earth as an oblate spheroid. In classes on radioactivity, radioisotopes, half-lives, and decay mechanisms, students are taught the concepts of absolute and relative ages; for example, by measuring the half-lives of radioactive isotopes contained in rocks, we can determine how many years ago the rocks solidified. In biology classes on species evolution and the environment, students examine fossils and conduct literature reviews to learn about prehistoric species and their various paleoenvironments. While studying atoms and molecules in chemistry classes, students also learn about the crystal structures of minerals, how they are created, transformed, and destroyed, and observe minerals using polarizing microscopes to learn more about how initial conditions affect their properties, such as their crystal form and color. They also use polarizing microscopy to observe and learn more about minerals.

In addition to natural science, students must understand mathematics for objective evaluation, possess logical English skills, and develop their communication skills. In mathematics class, students learn statistics and vector equations. In English classes, students read previous research in various fields and discuss findings with each other, and in communication classes, students acquire skills for presentations. In this way, students engage with many subjects to understand nature, and the basis of these subjects is the study of Earth science. To achieve this, teachers from different specialties form teams to create syllabi and work on their lessons (Figure 5).

Figure 5 Interdisciplinary Team Teaching

3. Hands-On Experience to Consolidate Learning

For inexperienced students, it is important to "visit the site" and "touch the real thing" in order to develop a connection with natural sciences. To learn about dinosaurs in a biological evolution class is a very different experience from seeing a skeleton of one and wondering what kind of world it lived in. In the "Basic Inquiry-Based Study of Natural Science" course, students go out and get hands-on experience of Earth sciences and are provided with special lectures and workshops that help to consolidate in-school learning.

In 2021, students visited the Hokudan Earthquake Memorial Park Nojima Fault Preservation Museum and

the Disaster Reduction and Human Renovation Institute to learn about disaster prevention, reduction, and mitigation (Figure 6). The Nojima Fault Preservation Museum houses a visible section of the Nojima Fault, which was responsible for the 1995 Southern Hyogo Earthquake and was designated a "special natural monument" by the International Union of Geological Science. Students could not only see and touch a part of the fault line but also observe examples and records of the devastation caused by the earthquake, as well as get a better grasp of the mechanisms that caused the event. At the Disaster Reduction and Human Renovation Institute, students learned in more detail the causes and consequences of the Southern Hyogo Earthquake and could view and handle artifacts from the disaster (Figure 7). Before visiting the museum, teachers always study in advance to narrow down the points for observation and experimentation. After the visit, students are required to submit a detailed report on concepts learned.

Figure 6 At the Hokudan Earthquake Memorial Park Nojima Fault Preservation Museum

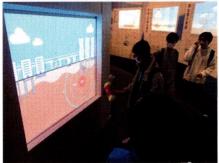


Figure 7 At the Disaster Reduction and Human Renovation Institute

Students also visited the National Museum of Nature and Science and the National Museum of Emerging Science and Innovation (Miraikan) to broaden their knowledge in various fields of science. The National Museum of Nature and Science is one of the largest science museums in Japan, containing a vast collection of tangible examples of natural science, history, and science technology (Figure 8). Meanwhile, Miraikan is one of the largest engineering museums in Japan, with extensive exhibitions primarily concerning the relationship between science and society, and aspects of scientific ethics (Figure 9).

6

Figure 8 At the National Museum of Nature and Science

Figure 9 Training at the National Museum of Emerging Science and Innovation (Miraikan)

The in-person education is not limited to receiving special lectures and workshops to improve theoretical understanding, but also includes practical field work. As an example, students visit and conduct geological surveys at the San'in Geopark World Heritage site, known for its outcrops where geological structures and rock consolidation can be clearly observed (Figure 10).

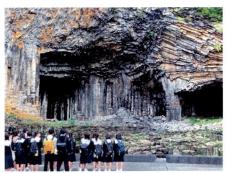


Figure 10 At the Genbudo Cave in San'in Geopark

4. Evaluation of Progress to Date and Future Tasks

7

Considering that the program is still too novel to produce statistically meaningful effects in students' achievement grades, to evaluate students' response to these curricula and field trips, surveys were conducted (Figure 11).

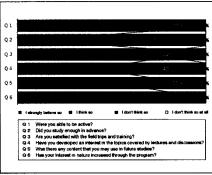
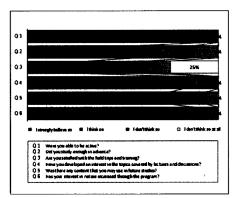



Figure 11 Aggregate Results of Student Responses to the Questionnaire on the "Basic Inquiry-Based Study of Natural Science"

The following are some of the comments submitted by students (Himeji Higashi Senior High School 2020):

- "In addition to acquiring knowledge in individual fields, I was able to understand the importance and difficulty of understanding nature as a whole."
- "I think it is important to have a broad understanding of nature in order to question the 'why' and 'what'
 about all things, and to thoroughly investigate these questions."
- "I comprehended well the intention of understanding nature based on Earth science."
- "If my research is based on one specialized field, I will lose my awareness of the relationship between the natural sciences and society."

These comments and the results presented in Figure 11 show an overall favorable attitude toward the course and field trips. Many students commented that they were able to see the deep connections between different fields of science. Figure 12 summarizes the results of a student questionnaire regarding the museum trips. More than 85% of students acknowledged the trips' effectiveness and commented that they wished they had spent more time at the sites.

8

Figure 12 The results of a student questionnaire regarding the museum trips

The following are some of the students' impressions of the trips:

- "I was able to rediscover things that I didn't know deeply until now, such as the mechanism of earthquakes."
- "Looking at the fault that runs through the site of the house, I felt the unstoppable threat of nature, and
 at the same time, I learned that disaster mitigation is possible with appropriate measures."
- "One thing that left an impression on me in the stories of the victims was the words, 'It is important to be more in tune with nature'."
- "For me, who thought that disaster prevention was about how to conquer nature, it was shocking to hear that harmoniously coexisting with nature would lead to disaster prevention."

The results show that our school's efforts may have had a significant effect on student learning. For teachers to be able to integrate four fields of science (i.e., chemistry, physics, biology, and Earth science) and understand nature comprehensively, varied, cross-disciplinary knowledge is needed. Many teachers in Japan study at universities to specialize in specific subjects, such as chemistry or physics, and are hired to teach specific subjects. Therefore, it is difficult for many teachers to understand and teach the natural sciences from a broad perspective. The authors will continue their efforts to overcome various issues in nature education that remain, and endeavor to disseminate the results of our school's efforts to the whole of Japan. The results introduced here will be reported to the Ministry of Education, Culture, Sports, Science and Technology and may have a significant impact on Japan's future education policies.

Acknowledgements

Professor Norihito Kawamura of the University of Hyogo Graduate School gave us the opportunity to present this research. Dr. Kenichiro Hisada, a former professor at the University of Tsukuba, was a key advisor in the development of the syllabus. Himeji Higashi High School is deeply grateful to both. We would like to thank Editage (www.editage.com) for English language editing. This article is based on a presentation given at the 9th International Conference on Geoscience Education (IX GeoSciEd) on August 24, 2022.

References

Science and Technology Council of the Ministry of Education, Culture, Sports, Science and Technology (2009). 第 4 期科学技術基本計画報告書 (4th Science and Technology Basic Plan Report).

8. 21 世紀の中高生による国際科学技術フォーラム SKYSEF2024

(ア)発表の目的

科学研究の成果発表や科学探究活動を通じて、国内外の生徒と議論することによって、科学探究の諸能力を高め合うとともに、生徒の課題研究とその発表をさまざまな形で支援してきた教員同士のネットワークを構築する。

(イ) 主 催

静岡理工科大学

(ウ)発表テーマ

Late Magma Differentiation of Bingi Bingi Complex, Southeast NSW, Australia

- Based on Oscillatory Zoned Structure of Amphiboles of Granitoids -

(工) 実施日程

令和6年8月20日(火)~23日(金)

(才)場所

静岡市清水テルサ

(力)参加者

生徒:松田理沙、稲本晴香、永野千世、横山桃子(科学部3年次女子生徒)、

引率:川勝和哉(主幹教諭/理科)

(キ)内容

8月20日(火)開会式、基調講演(加藤憲二静岡大学名誉教授)、歓迎レセプション

8月21日(水)ポスターセッション、口頭発表

8月22日(木)国際共同プロジェクト(課題研究)、ティーチャーズ・ミートアップ

8月23日(金)国際共同プロジェクト、発表会、表彰式、閉会式

(ク) 振返り

文系と理系の女子生徒の強い希望で参加することになった。発表内容が高度に専門的だったが、ともにオーストラリア研修に参加し、研究論文の作成にかかわった生徒だったため、準備も計画的に進められ、満足いく成果を得ることができた。

(ケ)参加生徒の感想

・ 1日目から私は今まで発表してきた中でも過去最高に不安と緊張でいっぱいでした。日本語だけ しかしゃべることができない自分への不甲斐なさ、他の日本の高校生は海外の高校生と楽しく話 をすることができているという状況にただただすごいという思いと自分が取り残されるような感 覚と焦りが頭の中で回っていました。それでも次第に台湾の高校生やグアムの高校の先生とお話 したりしました。でもやはり考えてしまうのは英語が頭の中ですぐに出てこないことです。授業で する英語とはまた違う難しさが日常会話の英語ではあると気づきました。1度オーストラリア研修 に行っているからか英語は聞きとれましたが、自分の言いたいことが言えないというのはこれほ どきついことだとは思いもしませんでした。

2日目のポスター発表や口頭発表の時、私たちの研究が高度で理解しづらいことに合わせ、英語で発表ということもあり、なかなか聞いてくださった生徒の方や他校の先生方にわかってもらえなかったと思います。その度に皆で一緒に原稿を直したり身振り手振りを加えてみたりと改良していきました。結果的にこのことは口頭発表でも役に立ったと感じます。

3日目の国際共同プログラムでは班分けをされ、海外の高校生と一緒に作業をしました。イタリアの高校生が辛抱強く私の英語を聞いてくれたおかげで、意外にも自分が話したい内容が通じるようになっていきました。私はこの SKYSEF でたくさんのことを学べたと思います。そして英語もちゃんと勉強していつかまたローザにあった時に会話ができるようになりたいと思いました。

・ 川勝先生は静岡に行った4日間含め、論文の仕上げ、準備、計画、旅行会社との打ち合わせ等たくさん考えてくださいました。ありがとうございました。SKYSEF に参加して本当に良かったです。不安や緊張、心配もたくさんあったけど終わって振り返ってみると楽しい思い出ばかりだし、英語オンリーの生活を4日間連続で送る経験はそうそうにできないことだと思うので自分に自信も湧いてきます。

自分たちの研究は日本語で説明しても難しい内容で JPEG に参加した際に伝えることの難しさを痛感していました。今回は英語で説明して聞き手に理解してもらう必要があったので、どう説明したら分かりやすいか(道具、ポスター、身近なもので例える等)、何を強調すべきか、などメンバー4人で話し合って話し込んで考えました。まさか私たちが賞を取るなんて!とても拙い英語だったけど、伝えようとする姿勢を評価してもらえたようです。受験との両立でめげそうになりながらも、頑張ってきてよかった!と思えた瞬間でした。涙が溢れそうになりました。

4日目のお昼ご飯はイタリアの人3人、タイの人2人、グアムの人1人、私で海鮮丼を食べに行きました。また、パン屋さんでパンの説明をしました。私的にそこで1番色んな人と英語でたくさん話して、仲も深まり、英会話力の向上も少し実感でき、有意義で楽しい時間になりました。日本にいるのに日本人が私しかいないし、みんな英語ペラペラだし、とんでもなく不安だったけど、私の拙い英語をみんな優しく聞いてくれたのでその時間を楽しむことができました。たくさんの人とインスタを交換して DM しています。特にイタリアの友人との会話が楽しくて夢中になって英語で話しています。

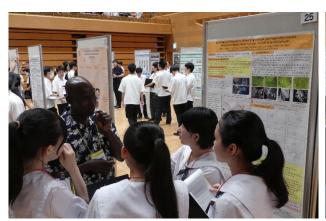
・ 2日目のポスター発表の前半時間は緊張して原稿を読むだけになってしまい、相手の目を見て 笑顔で話すということが出来ず、うまく発表することができませんでした。だから、後半時間と口 頭発表は相手に伝わるような発表をしたいと思い、原稿を確認しながら話すのをやめて、少し不格 好になってしまったけど自分の言葉で話してみました。すると、自分の言葉で一生懸命伝えたほう が、綺麗な英文を並べて作った原稿を読んだ時よりも研究の内容を理解してもらうことができま した。そして発表の後に、わかりやすかったよとか、高校生のしている研究とは思えないくらいす ごいねと言っていただけた時は本当にうれしかったです。英語の流暢さよりも自分の言葉でわか りやすく説明することや、相手の方とコミュニケーションをとりながら笑顔で発表を進めること が大切だと思いました。

3~4日目のクラフトはとっても楽しかったです。私の班はフレンドリーな方が多くてすぐに 打ち解けることができました。私の班にいる海外の方はオスカーという名前で初めはどうやって 仲良くなっていこうかと悩んでいましたが、絵しりとりや台湾のゲームをしていくうちに自然と 仲良くなることができました。学校の友達と仲良くなるのと同じように仲良くなれたことが嬉し

集合時にさっそく参加者どうしで会話が始まる

静岡大学の教員による基調講演

かったです。オスカー以外はカタコト英語だったけど絵を描いたり一緒に作業したりするうちに どんどん皆で仲良くなれたことがうれしかったし、たった2日一緒に作業しただけでこんなに仲 良くなれると思っていなかったので、この出会いを大切にしたいです。


・ ポスターセッションの時間は30分×2セットで、合計4、5回発表できました。発表が終わるごとに分かりにくそうだったところを修正して、説明の仕方を工夫して続けていると、最後の方にはかなり良くなっていたのではないかなと思います。最初の方はあまり質問も来なかったけど、最後は難しい質問も来るようになりました。質問に答えるのは難しかったけど、質問してくれる人が発表内容をかなり理解してくれていると考えるととても嬉しかったです。口頭発表の前のお昼休憩に、その時間にポスターセッションで分かった課題をなんとかクリアして、もっと分かりやすい発表にできるように工夫して修正しました。その甲斐あって、本番は緊張しながらも楽しく発表できたし、今までで一番分かりやすい発表ができたと手ごたえを感じました。実際に賞も獲れて、審査員の方に、伝えたいという気持ちが一番伝わってきたと言っていただけて嬉しかったです。

歓迎レセプション (グアムの教員と)

ポスター発表

Hyogo Prefectural Himejihigashi Senior High School

Our School is a Super Science Highschool (SSH) that stands within the grounds of the World Heritage Site of Himeji Castle. The keep is visible from almost every classroom, in fact. We are a school of 840 students, two-thirds of whom elect to enter one of our science courses.

Himeji Castle

School Motto

Our school motto is "Expand your individuality and your dreams will fly!" To stay true to this ideal, we have done a few things to break the mold.

We have adopted a credit system, which is uncommon in Japan. This allows students more flexibility to study what they are interested in. We also have a lot of career guidance. Various professionals and academic come to the school to have and discuss their experiences. Building on that, students visit or even work with various companies and organizations. Some even experience nursing in hospitals and clinics.

These events help students to find things or careers they are interested in, and helps them understand how to get these.

Super Science Highschool

Our school has many events such as language training programs, a field study in Australia, a science training program at Biogen, and so on.

We are members of science club and we will go to an international conference in the U.S. this December. The science club leads our school's SSH activity. We have participated in many conferences in Japan, and got many awards.

本校の学校紹介

Late Magma Differentiation of Bingi Bingi complex, Southeast NSW, Australia -Based on Oscillatory Zoned Structure of Amphiboles of Granitoids-

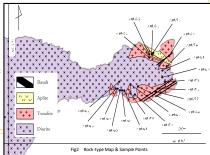
Himeji Higashi Prefectural Senior High School Science Club, Hyogo Prefecture, Japan Risa MATSUDA Haruka INAMOTO Chise NAGANO Momoko YOKOYAMA

Hydrothermal solution Oscillatory Zoned Structure (OZS) Coupled substitution Subsolidus

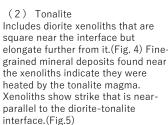
Motive and background of research

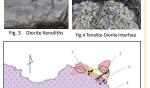
We conducted an initial study of Bingi Bingi Point, an important area for studying differentiation processes in incompletely mixed magmas.

Oscillatory Zoned Structure A repeating structure of μm-order bands across the growth axis of a crystal. Forms due to ion substitution and recrystallisation as hydrothermal solutions circulate in late-stage magma differentiation.


Overview of research area

Bingi Bingi Point is in New South Wales, Australia (36°0' 50"S, 150° 9' 22"E, Fig. 1) located in the Lachlan Fold Belt and a part of the Moruya Batholith.


Fig. 1 Bingi Bingi Point (source: Google Earth)


The area is largely comprised of two different types of magma from the late Devonian. Aplite veins, four meters wide, intrude into the plutonic rock. Basalt magma intruded 30 million years ago. (Fig. 2)

Overview of rock

(1) Diorite Euhedral amphiboles and quartz pegmatite crystallized due to hydrothermal activity at interfaces (Fig. 4)

Aligned strike of xenolit

(3) Aplite veins

Aplite veins intrude tonalite and contain xenoliths of both diorite and tonalite.(Fig. 6)

Three parallel veins, two black and one oxide red, intrude linearly across diorite, tonalite and aplite.

All veins include aplite xenoliths and aplite shows thermal effects near interfaces.

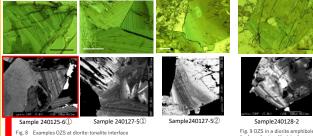
References 1) Kawakatsu, K. and Yamaguchi, Y. (1987) Geochim. Cosmocim. Acta, 51,535-540. 2) Prendergast, E.I. (2007) Australian J. Earth Sciences, 481-501.

3) Prendergast, E.I., Offler, R. and Zwingmann, H, (2012) Australian J.Earth Sciences, 1-18. 4) Whalen, J.B. and Chappell, B.W. (1988) Amer.Mineral,73,281-296.

Branagan, D.F. and Packham, G.H. (2000) Published by New South Wales department of Mineral Resources, Sydney, 317-319.

6) Wiebe, R.A. and Collins, W.J. (1998) J.Struct.Geol.,vol.20, 1273-1289.
7) Smith, J.V (2004) J.Struct.Geol.,26,1317-1339.
8) 兵庫県立姫路東高等学校科学部 (2023) 日本地質学会第128年学術大会要旨/第20回神

奈川大学全国高校生理科・科学論文大賞努力賞受賞論文


Acknowledgements Our thanks to Professor Kawakami and MSc student Nakano (Kyoto University) for their advice and assistance with EPMA analyses.

OZS of amphibole

OZS was observed in samples where diorite interfaces with tonalite. (Fig. 8) It is observed in the green actinolite rim, formed by recrystallisation, and not the original magnesio-hornblende core. OZS appears to "fill in" the gaps.

Invasion of hydrothermal solution can be observed in the a-, b- and c-axes, but OZS only develops across the c-axis, OZS forms in a parallel pattern in non-contiguous amphibole crystals.

Later OZS cuts across earlier, inner, zones, corresponding with overlapping OZS from other grains near the outer boundary. (Fig. 8)

. 9 OZS in a diorite amphi from the tonalite interface

EPMA Analysis of OZS (Sample 240125-6 (1))

- 1) Thermal convection from the tonalite magma created diorite xenoliths which elongated along the interface. (6)(7)
- As the tonalite magma dehydrated and foamed, hydrothermal fluid washed over the diorite (1), causing OZS to develop in the amphibole.
- The Al VI value is less than 0.6, indicating hydrothermal solution produced from dehydrating, saturated magmas. Edenitic substitution patterns in the OZSs dominate the amphibole. Fe³⁺in the M1-M3 sites comprises more than half Σ Na+, Ti+,Fe³⁺. The Fe²⁺/ (Fe²⁺+Mg) value is 0.18 \sim 0.50 and the Mg/ (Mg+Fe_{total}) gradually decreases from core to rim. The OZS coexists with euhedral magnetite and contains traces of Cl. Along with the presence of sphene, these further indicate secondary recrystallisation in an

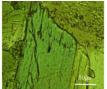
Identical structures found can be explained by the effects of hydrothermal solutions in differing areas and eras (1)(8). This shows that OZS is a useful indicator of hydrothermal circulation.

Current study

- 1) Comparison of the Australian "I-type" and "S-type" granitoid classifications to the Japanese "magnetite" and "ilmenite" classifications.
- 2) Estimation of hydrothermal solution temperature and pressure from iron oxide minerals or feldspar that coexist with OZS amphibole.

Keywords

Xenoliths ...


Fragments of other rock contained in igneous rock. They often have elongated shapes and can be found in many areas where research is conducted.

solution

Hydrothermal A high temperature, low concentration aqueous solution of minerals.

What is Oscillatory Zoned Structure (OZS)?

OZS in an a

OZS is a wave-like repeating structure of µm-order bands which develops across the growth axis (c-axis) of the crystal.

It is formed by ion substitution and secondary re-equilibration due the circulation of hydrothermal solution during late-stage magma differentiation.

Motive and Background

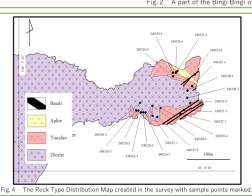
We did an outcrop survey in NSW, Australia

We modelled the environment during the last-stage magma differentiation from a mineralogical viewpoint

Bingi Bingi Point NSW, Australia

Bingi Bingi Point is an important area for studying magma differentiation processes as different magmas mixed incompletely here.

The Research Area



Bingi Bingi Point is located in New South Wales, Australia 036° 0' 50" S Co-ordinates:

150° 9' 22" E

The circumference of the area is about 1.5km

Overview of Rock Types

(1) Diorite

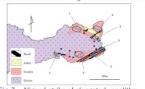
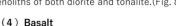
An igneous rock of medium silica content Euhedral amphiboles and quartz pegmatite crystallized due to hydrothermal activity at interfaces. (Fig. 5)

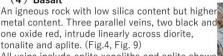
Fig. 5 Diorite-Tonalite interface Fig. 6 Diorite xenlolith:

(2) Tonalite

An igneous rock similar to diorite but with a higher quartz content. Includes diorite xenoliths that are square near the interface but elongate further from it.(Fig. 6) Fine-grained mineral deposits found near the xenoliths indicate they were heated by the tonalite magma.

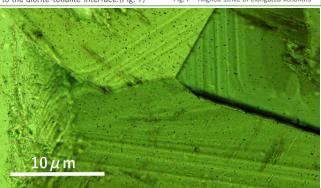
Xenoliths show strike that is near-parallel to the diorite-tonalite interface.(Fig. 7)

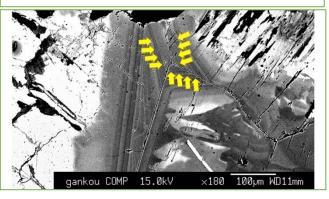




Fig. 7 Aligned strike of elongated xenoliths

Overview of rock

(3) Aplite vein


An igneous granite-like rock with high quartz content. Aplite veins intrude tonalite and contain xenoliths of both diorite and tonalite.(Fig. 8)



All veins include aplite xenoliths and aplite shows thermal effects near interfaces.

OZS was discovered in amphiboles in diorite near interfaces Twelve polished hin section were riewed through a polarized optical nicroscope Distinct OZS is bserved where onalite and diorite in contact. (Fig.

OZS was discovered in amphiboles of diorite away from the interface

Fig11 Examples OZS of amphibole of diorite being off tonalite (Sample 240128-2)

OZS developed an irregular shape away from the interface (Fig. 11) The sample coexists with euhedral magnetite and sphene

EPMA analysis of OZS

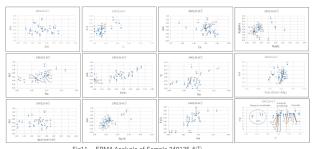


Fig11 EPMA Analysis of Sample 240125-6①

Conclusions & Source of hydrothermal Discussion

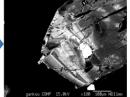
Diorite solidified Tonalite magma flows across, creating diorite xenoliths.

Thermal convection elongates xenoliths

Xenoliths are attached to the wall of cooled diorite.

We discovered a lot of OZS created by samples.(Fig13)

External OZS cuts across or deforms internal OZS


An effect of hydrothermal solution from dehydrating magmas.

10 µ m

Conclusions & Discussion

Diorite's own hydrothermal solution circulated strongly

Strong Patchy Zoned Structure

Α	Tet.	Α		Tet.		
空白	- Si -	→ Na、Ł	(+	Al	1型	Edenite type
M1-M3	Tet.	M1-M3	Tet.			
Mg +	Si →	Al -	+ Al		2A2	Tschermakite type
Mg +	Si →	Fe ^{3 +} +	Al		2B型	
M4	M1-3	M4 N	И1-3		·····	
Ca +	Mg →	Na +	Al		3A型	Glaucophane type
Ca +	Mg →	Na +	Fe ³⁺		3B型	Riebeckite type
Α	M4	Α	M4			
空白 +	Ca →	Na +	Na		4型	Richtecite type
M1-M3	Tet.	M1-M3	Tet.			
Mg +	2Si →	Ti +	2AI		5型	
M4	M1-3	M4 N	И1-3			
2Ca +	Mg →	2Na +	Ti		6A型	
Ca +	Al →	Na +	Ti		6B型	

Table 1: Amphibole coupled substitution patterns (left is Edenite/ Czamanske and Wones, 1973 revision)

The coupled Edenitic substitution patterns in the OZSs dominate the amphibole and indicate an oxidizing environment

The Al VI value is less than 0.6.

↑ a characteristic of hydrothermal solutions produced from saturated magmas undergoing dehydration.

 Fe^{3+} in the M1-M3 sites comprises more than half the total of Na+Ti+ Fe^{3+} . The Fe $^{2+}/\ \mbox{(Fe}\,^{2+}+\mbox{Mg})\ \mbox{value}$ is 0.18~0.50 and the Mg/ (Mg+Fetotal) gradually decreases from core to rim.

The QZS contains low traces of CL

These are the characteristics of a pluton experiencing secondary re-equilibrium in an oxidizing environment.

All of the OZS in rocks...

Since OZS coexists euhedral magnetite and sphene, OZS formed in oxidizing environment under the subsolidus condition.

We think that OZS is useful as an indicator of hydrothermal solution circulation of as OZS development is affected by era and region.

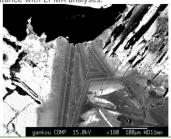
Current Studies

Research area= Batholith(granitoid) I-type (Igneous): Contains magnetite and ilmenite S-type (Sedimentary) : Contains ilmenite

Rock of research area(granitoid)

It has higher oxygen partial pressure than S-type one

Australia: Classify


"magnetite" and "ilmenite"

A comparison of classifications is necessary.

We want to find a way to estimate hydrothermal solution temperature and pressure from iron oxide minerals or feldspars that coexist with OZS amphiboles.

Acknowledgements

We wish to thank Professor Kawakami Tetsuo and Master of Science student Miku NAKANO (Graduate School Faculty of Science, Kyoto University) for their advice and assistance with EPMA analyses

References

- 1)Kawakatsu, K. and Yamaguchi, Y. (1987) Geochim.Cosmocim.Acta,51,535-540.
- 2) Prendergast, E.I. (2007) Australian J. Earth Sciences, 481-501.
 3) Prendergast, E.I., Offler, R. and Zwingmann, H, (2012)
 Australian J.Earth Sciences, 1-18.
 4) Whalen, J.B. and Chappell, B.W. (1988) Amer.Mineral,73,281-296.
 5) Branagan, D.F. and Packham, G.H. (2000)

- 5) Branagan, D.F. and Packham, G.H. (2000)
 Published by New South Wales department of Mineral Resources,
 Sydney, 317-319.
 6) Wiebe, R.A. and Collins, W.J. (1998) J.Struct.Geol.,vol.20, 1273-1289.
 7) Smith, J.V (2004) J.Struct.Geol.,26,1317-1339.
 8) 兵庫県立姫路東高等学校科学部(2023)日本地質学会第128年学術大会要
 旨/第20回神奈川大学全国高校生理科・科学論文大賞努力賞受賞論文.

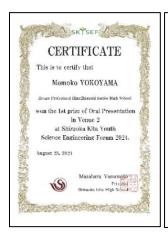
Thank you for your attention

口頭発表の PowerPoint

口頭発表

国際共同プロジェクト

成果発表会



本校は口頭発表の部第1位を獲得

イタリア代表団と親交を深めました

9. 国連「世界津波の日」2024 高校生サミット

(ア)発表の目的

「世界津波の日」は、2015年12月の国連総会において日本が提唱して全会一致で採択され制定された。世界50か国の高校生が災害の脅威と対策を議論したりきずなを深めたりする場として2016年から開催されている。

(イ) 主 催

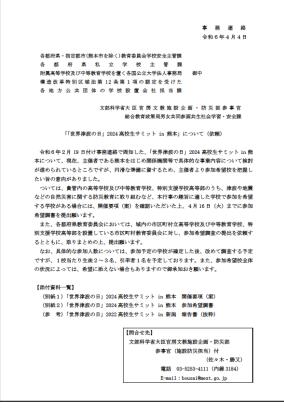
文部科学省大臣官房文教施設企画・防災部

(ウ)発表テーマ

Disaster Prevention Education —Combining Scientific Understanding of Disaster with Knowledge of Disaster Mitigation Strategies

(工) 実施日程

令和6年10月23日(水)~10月24日(木)


(才)場所

熊本市熊本城ホール

(力) 参加者

生徒:岡本莉空、寺田悠哉、宮下翔真(科学部2年 次男子生徒)

引率:川勝和哉(主幹教諭/理科)

サミット依頼状

(キ)内容

10月22日(火) スタディーツアー

10月23日(水)分科会(討論・統括)、開会式、スタディーツアー報告会、レセプション

10月24日(木)記念植樹、記念碑除幕式、総会(共通宣言採択)、閉会式

(ク) 振返り

世界 50 か国から約 500 名の高校生が集い、防災、減災、創造的復興について自分たちの意見について議論した。海水面の上昇によって国土が狭小しつつある国や、貧しくて災害に備えることすら難しい国からの参加生徒からは、自身の国の状況の紹介もあった。15 部屋に分かれて行われた分科会は非常に意義深い会となった。教員間の情報交換や交流も盛んにおこなわれ、今後の連携についても話し合うことができた。このような会議に参加すると、英語が話せて英語で自然科学の課題研究の指導ができる教員の育成が必要であると感じる。

(ケ)参加生徒の感想

・ 今回、様々な国から人が集まる高校生サミットで、発表する事が出来てとても良い経験になった。とても緊張していたけど、楽しく議論する事が出来た。また、班になって災害について考えるときには協力する事が出来てよかった。レセプションでは、海外の人と話して仲良くなる事もできた。これらのことを通して、積極的に話すことはとても大切だと思った。実際外国の人と話すのはミスするのが怖くて話しづらかったが、英語の上達のためにはやっぱり自分から話していかないといけないし、将来において大切な、自分で考えて行動する自主性をしっかり持たないといけないと感じ、学んだ。

防災・減災の発表に関しては、今回頑張って発表する事が出来たが、よりみんなに主張したい、 伝えたいというようなプレゼンテーションを意識して行う事は十分ではなかったと思う。こんな 事を伝えたい!という自分の思いを理解してもらえる事が大切だと分かった。それでも自分たち の主張が共通宣言に盛り込まれたことから、発表のやりがいを感じるとともに、今後は世界のさま ざまな現象に目を向け、自分のできることについて考え行動したい。

・ 今回の高校生サミットでは、社会で自分を主張していくためのコミュニケーションの重要性を あらためて認識した。海外の人と会話をする時に英語はツールであって、本当に必要なのは何を主 張するのかということだ。英語にとらわれすぎて、英語によって何を伝えたいのかという思いが後 回しになってしまう場面があったことが反省点だが、それでも何とか考えを伝えられたので良か った。これからは、自分は世界の中で生活していることをいつも意識して、社会環境や自然環境に ついて興味を持って生活していきたい。

各部屋で分科会による議論が行われた

	T FOODING CONTROL				
School Name	Hyogo Prefectural Himejihigashi Senior High School				
	Riku Okamoto				
Japan	Yuya TERADA				
	Shoma MIYASHITA				
Assigned theme	"Disaster prevention" through self-help and mutual assistance "II. "Disaster risk reduction" in harmony with nature				
(II)	III. "Creative reconstruction" based on lessons learned from major disaster				

Learning about disaster prevention and mitigation in high school

-Scientific understanding of natural disasters and acquisition of knowledge of disaster prevention behavior-

Presentation Overview

1. Current Situation and Issues

Title

Our school is located near the epicenter of the Southern Hyogo Earthquake that occured on January 17, 1995. But, as the years pass by, lessons learned have started to be forgotten. The main lesson we learned from the disaster is that it is necessary to understand the natural world scientifically and to practice disaster prevention activities as an individual and societal scales to protect ourselves from disasters. Japan has many natural disasters (such as earthquakes, volcanic eruptions, tsunamis and typhoons) and students are taught how to prepare for and respond to them. Aside from those practical considerations, students learn about the underpinning scientific theories of such disasters in earth science classes. However, students don't study the four natural science (chemistry, physics, biology and earth science), but only choose to study 2 or 3 subjects from them. Therefore, students who don't choose earth science have no opportunities at school to learn the mechanisms behind disasters. In modern Japan, very few schools offer earth science courses so many students are denied the opportunity to understand the theory of natural disasters.

2. Suggestions for improvement

Our school has been designated as a Super Science High school (SSH). The most important research and development theme of our school is "International Activities centered on Earth Science". Our school has set up "Basic Inquiry-Based Study of Natural Science" (worth 4 credits in 1st grade and 2 credits in 2nd grade) to encourage comprehensive across the four fields of science (chemistry, physics, biology, and earth science) with a focus on earth science. In this system, all students study across the four fields of natural science as well as mathematics and so they can come to understand natural phenomena and natural disasters comprehensively. In "Basic Inquiry-Based Study of Natural Science", students actually go out and get hands-on experience earth sciences. Students investigated the Nojima Fault which was responsible for the Southern Hyogo Earthquake and visit the Disaster Prevention Future Center. We learned about disaster prevention and mitigation techniques there.

3. Action Plan

We conducted a survey on students who participated about these activities. The results shows that our school's efforts is significant. We would like to show the world the fruits of our labour nationwide.

HYOGO PREFECTURAL HIMEIIHIGASHI HIGH SCHOOL

[Assigned theme]

"Disaster Prevention" through Self-Help and Mutual Assistance

DISASTER PREVENTION **EDUCATION**

COMBINING SCIENTIFIC UNDERSTANDING OF DISASTERS WITH KNOWLEDGE OF DISASTER MITIGATION STRATEGIES

Member

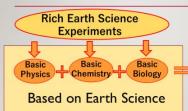
RIKU OKAMOTO YUYA TERADA SHOMA MIYASHITA

WHEN A DISASTER OCCURS...

DO YOU KNOW THIS DISASTER?

- (1) Should we just think without acting when a disaster occurs?
- (2) We cannot think about disaster prevention or mitigation without knowing how disasters occur.

but logical understanding



WHAT IS SSH?

- (1) SSH is a project in which Japan's Ministry of Education identifies, designates and invests in cutting-edge high schools in them in order to promote science and mathematics education.
- (2) Currently, approximately 210 high schools are enjoying the benefits of this program under the SSH.

CLASS DEVELOPMENT

Basic inquiry-Based Study of Natural Science

BASIC INQUIRY-BASED STUDY OF NATURAL SCIENCE

- · Students work to gain a comprehensive crossdiscipline understanding of basic natural science.
- · Earth science is the summary subject.
- (1)1st grade students study mainly basic physics and basic biology to begin developing comprehensive knowledge of Earth Science.
 (2) Students study add basic chemistry knowledge to their natural science basics in 2nd grade.

FOR NATURAL SCIENCE TO TAKE ROOT

Hokudan Earthquake Memorial Park Nojima Fault Preservation Museum

Disaster reduction and h renovation institution

QUESTIONNAIRE Awaji · Kobe training 70 \$ 70 \$ 90 \$ 70 \$ 90 \$ 70 \$ 90 \$ 70 \$ 90 \$ 70 \$ 90 \$ 10 Degree heavy particle appropriets in seeing or descripting or descripting program? 90 Degree heavy particle appropriets in seeing or descripting or descripting program? 90 Degree heavy particle appropriets in seeing or descripting program? 90 Degree heavy particle appropriets in seeing or descripting descripting or descripting program? 90 Degree heavy particle appropriets in seeing or descripting or descripting program? 90 Degree heavy particle appropriets in seeing or descripting or descripting program? 90 Degree heavy particle appropriets in seeing or descripting or descripting program? 90 Degree heavy particle appropriets in seeing or description or description

Consideration of the considera


口頭発表パワーポイント

THERE ARE TWO POINTS

- (1) Since earth science is a fundamental subject that covers the natural sciences, we provide education that integrates four fields in to earth science.
- (2) For disaster prevention education, it is necessary to have a logical understanding of natural phenomena and education on social disaster prevention strategies.

各国の代表が壇上に集まり全体会で議論して共同宣言を採択

オランダの教員と

レセプションで地元の高校生が見事な演奏と踊りを披露

78校の約310人と海外43 城ホールで始まった。 樹李亜さんが 2年の河合智彩さんと副議 開会式では、 を合わせる」と宣言した。 校生が議論するサミットは 自然災害が発生する中、 長の九州学院高2年の渡辺 世界へ、そして未来へ」。 本で命を守る対策と創 本市中央区の熊本 「熊本の教訓を 議長の熊本高 「世界各地で った 田桃佳さんは「各国の考えに議論した熊本高2年の和 画を考えた。減災をテーマ 界津波の日」に合わせて2 向きあっていることが分か や文化を知ることができ 英語で発表した後、 復興の3テーマで15グルー 願っている」と述べた。 防災リーダーとなることを サミットは、 高校生たちは防災、 どの国も災害に真剣に 国連総 県熊本

2024年10月24日 熊本日日新聞2面

 International Webinar on Earth Science and Climate Change

(ア)発表の目的

世界的な気候変動について現状を科学的に分析し、どのように対応していく必要があるのか、さまざまな専門家が講演し、それをもとに議論して対応策を考える目的で、世界各国が持ち回りで毎年開催している国際会議で、川勝に講演依頼があった。

(イ) 主 催

Earth Science Scholars Conferences

(ウ)発表テーマ

Disaster Prevention Education —Combining Scientific Understanding of Disaster with Knowledge of Disaster Mitigation Strategies

(工) 実施日程

令和5年9月25日(月)~26日(火)

(才)場所

本校生物教室から ZOOM 国際配信

(力) 発表者

川勝和哉 (主幹教諭/理科)

(キ)内容

自然災害教育の観点から、気候変動への対応策について30分間講演を行った。

採択通知

I prefer: ORAL presentation

Disaster Prevention Education: Combining Scientific Understanding of Disaster with Knowledge of Disaster Mitigation Strategies

Kazuya Kawakatsu¹

¹Hyogo Prefectural Himejihigashi Senior High School, Honmachi 68-70, Himeji-City, Hyogo Prefecture, Japan E-mail: kazuya-kawakatsu@hyogo-c.ed.jp

Abstract

Our school is located near the epicenter of the Southern Hyogo Earthquake that occured on January 17, 1995. As the years pass by, lessons learned have started to be forgotten. The main lesson we learned from the disaster is that it is necessary to understand the natural world scientifically and to practice disaster prevention activities as an individual and societal scales to protect ourselves from disasters.

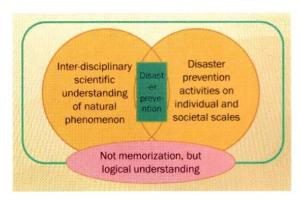


Fig.1 What is Needed for Disaster Prevention?

Japan has many natural disasters and students are taught how to prepare for and respond to them.

Aside from those practical considerations, students learn about the underpinning scientific theories of such disasters in earth science classes. However, students don't study the four natural science (chemistry, physics, biology and earth science), but only choose to study 2 or 3 subjects from them. Therefore, students who don't choose earth science have no opportunities at school to learn the mechanisms behind disasters. In modern Japan, very few schools offer earth science courses so many students are denied the opportunity to understand the theory of natural disasters.

The most important research and development theme of our school is "International Activities centered on Earth Science". Our school has set up "Basic Inquiry-Based Study of Natural Science" to encourage comprehensive across the four fields of science with a focus on earth science. Here is also "Inquiry-Based Study of Science and Mathematics" research based on earth science. In this system, all students study across the four fields of natural science and so they can come to understand natural phenomena and natural disasters comprehensively. In "Basic Inquiry-Based Study of Natural Science", students investigated the Nojima-Fault which was responsible for the Southern Hyogo Earthquake and visit the Disaster-Prevention Future Center. We learned about disaster prevention and mitigation techniques there. We would like to show the country the fruits of our labour nationwide.

Keywords: Southern Hyogo Earthquake, mechanisms, activities, disaster prevention

Biography

Master of Science, Shimane University Graduate School of Science.
Principal Teacher of Natural Science Education of High School.
Received the Noyori Science Encouragement Award in 2011 and 2014, the Physics Education Achievement Award of the Japan Society of Physics in 2012, the Outstanding Faculty and Staff Award from the Minister of Education, Culture, Sports, Science and Technology in 2013, the Kanagawa University Excellent Instructor Award for 15 consecutive years, the Tokyo University of Science Outstanding Instructor Award in 2017, and the Research Awards from the Takeda Science Foundation in 2018 and 2022.

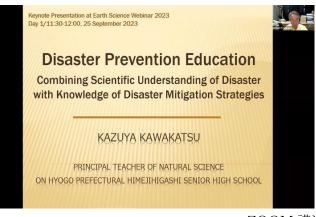
Wrote textbooks and problem collections on the basics of earth science, earth science, and the basics of science and mathematics.

Delegate of the Geological Society of Japan (2022~) and of the Union of Japan Earth Sciences (2020~), member of the Subcommittee on International Education Response, the American Geoscience Union, and the Society of Japan Geoscience Education.

Presenting Author Details and Photo

Full Name: Kazuya Kawakatsu

Email ID: kazuya-kawakatsu@hyogo-c.ed.jp


Phone No: 81-079-285-1166

LinkedIn: none Twitter: none Recent Photograph:

発表要旨と Cirtificate of Appreciation

ZOOM 講演データより

令和4年度~6年度 国際的な探究活動の記録と成果 一世界に羽ばたく「出る杭」の育成一

> 兵庫県立姫路東高等学校 〒670-0012 兵庫県姫路市本町 68 番地 70 電話 (079) 285-1166(代)

> > FAX (079) 285-1167

URL http://www.hyogo-c.ed.jp/~himehigashi-hs/